64 resultados para Concerti grossi, Arranged.
Resumo:
Landslide is a kind of serious geological hazards and its damage is very great. In recent years, landslides become more and more frequent along with increase of scale of engineering constructions and cause greater loss. Consequently, how to protect landslides has become important research subject in the engineering field. This paper improves the method how to compute landslide thrust and solves the irrational problem in the design of piles because of the irrational landslide thrust according to the theory and technology of existed anti-slide piles and pre-stressed cable anti-slide piles. Modern pre-stressing technology has been introduced and load balancing method has been used to improve the stressing behavior of anti-slide piles. Anchor cables, anti-slide piles and modern pre-stressing technology have been used to prevention complicated landslide. It is an important base to select values for the landslide thrust. An improved method to calculate design thrust of anti-slide piles has been presented in this paper on the base of residual thrust method by comparing existing methods to select values of landslide thrust in the design of anti-slide piles. In the method, residual landslide thrust behind the anti-slide piles and residual skid resistance before the piles has been analyzed, equitable distribution of residual landslide thrust behind the piles has been realized, and the method to select value of design thrust becomes more reasonable. The pre-stressed cable anti-slide piles are developed from the common anti-slide piles and are common method to prevent landslide. Their principle is that internal force of anti-slide piles is adjusted and size of section is diminished by changing constraint conditions of anti-slide piles. For landslides with deep slip surface and large scale of slopes, limitation of the method appears. Such landslides are in need of long piles and anchor cables which are not only non-economic but also can generate larger deformation and leave potential danger after prevention. For solving the problem, a new kind of anti-slide piles, inner pre-stressing force anti-slide piles, is presented in this paper, and its principle is that an additional force, which is generated in the inner anti-slide piles by arranging pre-stressed reinforcement or tight wire in a certain form in interior of anti-slide piles and stretching the steel reinforcement or tight wire, may balance out the internal force induced by landslide thrust whole or partly (load balancing method). The method will change bending moment which anti-slide piles are not good at bearing into compressive stress which piles are good at bearing, improve stressing performance of anti-slide piles greatly, diminish size of section, and make anti-slide piles not fissured in the natural service or postpone appearance of the fissures, and improve viability of anti-slide piles. Pre-stressed cable anti-slide piles and inner pre-stressing force anti-slide piles go by the general name of pre-stressed structure anti-slide piles in the paper, and their design and calculation method is also analyzed. A new calculation method is provided in the paper for design of anti-slide piles. For pre-stressed structure anti-slide piles, a new computation mode is firstly presented in the paper on the foundation of cantilever piles. In the mode, constraint form of load-bearing section of the anti-slide piles should be confirmed according to reservoir conditions in order to figure out amount of pre-stress of the anchor cables, and internal force should be analyzed for the load-bearing section of pre-stressed structure anti-slide piles so as to confirm anchorage section of anti-slide piles. Pre-stressed cables of the pre-stressed cable anti-slide piles can be arranged as required. This paper analyzes the load-bearing section of single-row and double-row pre-stressed cable anti-slide piles and provides a calculation method for design of the pre-stressed cable anti-slide piles. Inner pre-stressing force anti-slide piles are a new kind of structural style. Their load-bearing section is divided into four computation modes according to whether pre-stressed cables are applied for exterior of the anti-slide piles, and whether single-row or double-row exterior pre-stressed cables are applied. The load balancing method is used to analyze the computation modes for providing a method to design the inner pre-stressing force anti-slide piles rationally. Pre-stressed cable anti-slide piles and inner pre-stressing force anti-slide piles are applied to research on Mahe landfall in Yalong Lenggu hydropower station by the improved method to select value of design thrust of anti-slide piles. A good effect is obtained in the analysis.
Resumo:
Daolangheduge copper polymetallic deposit is located on east edge of Ondor Sum-Bainaimiao metallogenic belt, which is a prospective area of porphyry copper deposit, in Xianghuangqi of central Inner Mongolia. Geotectonically, it occurred in the continental margin accretion belt along the north margin of North China Plate, south of the suture zone between North China Plate and Siberian Plate. The intrusive rocks in this area mainly consist of intermediate-acid magmatic rocks, and the quartz veins, tourmaline veins and the transitional phase are comparatively developed. According to our research, the ore-bearing rock body is mainly quartz diorite while the surrounding rock is mainly biotite granite. Besides, the wall rock alteration are mainly propylitization, pyritization and silicification, which consist of epidotization, actinolitization, chloritzation and so on. The metallic minerals are mainly chalcopyrite and pyrite. In addition, the primary ore is mainly of quartz-chalcopyrite-pyrite type. Above all, Daolangheduge copper polymetallic deposit is suggested to be categorized in the porphyry copper type. With isotopic dating and geochemical research on quartz diorite of ore-bearing rock body, the zircon LA-ICP-MS U-Pb dating of two samples yields an age of 266±2 Ma, falling into the range of late Permian Epoch. It is the first accurate age data in Xianghuangqi area, so it should play a key role in the research of deposit and magmatic rocks in this area. With the major elements and trace elements analysis of 14 samples, the quartz diorite should be among the calc-alkaline series, the geochemical characteristics show higher large-ion lithophile elements of Rb, Sr and LREE, low high-field strength elements of Nb, Ta and high transition elements of Cu, Cr . Also, the REE patterns have negative Eu anomalies. With the same analysis of 4 sample for the biotite granite, the geochemical characteristics show higher Rb, Th,, Zr, Hf and LREE, low Nb, Sm and HREE and Eu has no anomaly. It should be among the calc-alkaline series, over aluminum quality and has characteristics of Adakites. According to isotopic dating and geochemical characteristics of ore-bearing rock body, it is suggested that its materials mainly derived from upper mantle that had fractional crystallization and its magma source region may be affected by fluid metasomatism of paleo-asian ocean. It should be an extensional process of post-orogeny according to regional tectonic evolution. Consequently, because of the decrease of temperature and pressure, the ore forming fluid was raised to surface and mineralized accompanied by magmatic activity which might occur in south of the suture zone. By geological survey, further geophysical and geochemical work is needed. In this area, we have accomplished high precision magnetic prospecting, high density electrical survey, gravity prospecting, soil geochemical prospecting, X-ray fluorescence analyzer prospecting and so on. According to geophysical and geochemical abnormal and surface occurrence, 11 drills are arranged to verification. The type of ores are mainly quartz-chalcopyrite-pyrite ores within 3 drills by drill core logging. Although the grade as well as the scale of already-found Cu deposits are insufficient for industrial exploitation, the mineralization prospect in this region is supposed to be great and the potential in mineral exploration at depth is excellent.
Resumo:
The processes of seismic wave propagation in phase space and one way wave extrapolation in frequency-space domain, if without dissipation, are essentially transformation under the action of one parameter Lie groups. Consequently, the numerical calculation methods of the propagation ought to be Lie group transformation too, which is known as Lie group method. After a fruitful study on the fast methods in matrix inversion, some of the Lie group methods in seismic numerical modeling and depth migration are presented here. Firstly the Lie group description and method of seismic wave propagation in phase space is proposed, which is, in other words, symplectic group description and method for seismic wave propagation, since symplectic group is a Lie subgroup and symplectic method is a special Lie group method. Under the frame of Hamiltonian, the propagation of seismic wave is a symplectic group transformation with one parameter and consequently, the numerical calculation methods of the propagation ought to be symplectic method. After discrete the wave field in time and phase space, many explicit, implicit and leap-frog symplectic schemes are deduced for numerical modeling. Compared to symplectic schemes, Finite difference (FD) method is an approximate of symplectic method. Consequently, explicit, implicit and leap-frog symplectic schemes and FD method are applied in the same conditions to get a wave field in constant velocity model, a synthetic model and Marmousi model. The result illustrates the potential power of the symplectic methods. As an application, symplectic method is employed to give synthetic seismic record of Qinghai foothills model. Another application is the development of Ray+symplectic reverse-time migration method. To make a reasonable balance between the computational efficiency and accuracy, we combine the multi-valued wave field & Green function algorithm with symplectic reverse time migration and thus develop a new ray+wave equation prestack depth migration method. Marmousi model data and Qinghai foothills model data are processed here. The result shows that our method is a better alternative to ray migration for complex structure imaging. Similarly, the extrapolation of one way wave in frequency-space domain is a Lie group transformation with one parameter Z and consequently, the numerical calculation methods of the extrapolation ought to be Lie group methods. After discrete the wave field in depth and space, the Lie group transformation has the form of matrix exponential and each approximation of it gives a Lie group algorithm. Though Pade symmetrical series approximation of matrix exponential gives a extrapolation method which is traditionally regarded as implicit FD migration, it benefits the theoretic and applying study of seismic imaging for it represent the depth extrapolation and migration method in a entirely different way. While, the technique of coordinates of second kind for the approximation of the matrix exponential begins a new way to develop migration operator. The inversion of matrix plays a vital role in the numerical migration method given by Pade symmetrical series approximation. The matrix has a Toepelitz structure with a helical boundary condition and is easy to inverse with LU decomposition. A efficient LU decomposition method is spectral factorization. That is, after the minimum phase correlative function of each array of matrix had be given by a spectral factorization method, all of the functions are arranged in a position according to its former location to get a lower triangular matrix. The major merit of LU decomposition with spectral factorization (SF Decomposition) is its efficiency in dealing with a large number of matrixes. After the setup of a table of the spectral factorization results of each array of matrix, the SF decomposition can give the lower triangular matrix by reading the table. However, the relationship among arrays is ignored in this method, which brings errors in decomposition method. Especially for numerical calculation in complex model, the errors is fatal. Direct elimination method can give the exact LU decomposition But even it is simplified in our case, the large number of decomposition cost unendurable computer time. A hybrid method is proposed here, which combines spectral factorization with direct elimination. Its decomposition errors is 10 times little than that of spectral factorization, and its decomposition speed is quite faster than that of direct elimination, especially in dealing with a large number of matrix. With the hybrid method, the 3D implicit migration can be expected to apply on real seismic data. Finally, the impulse response of 3D implicit migration operator is presented.
Resumo:
In the early part of this century, with the change from the seller's market to the buyer market, the competition between companies changed from product competition, selling competition to corporate image competition, and companies began to consciously build corporate reputation through fast developed mass media. As a result, a series of methods to build corporate image were created, such as advertising, public relations and corporate identify system(CIS), which ,in turn, promoted the development of the research of corporate image. The factors of corporate image have been the central issue of the corporate image research, for the probe of this issue is of great significance to both the development of corporate image theory and the practice of corporate image building. As far as the literature we have gathered is concerned, the exiting research on this topic either remains at the level of qualitative investigating and induction, or is limited in some particular industry. Therefore. There bean no commonly accepted corporate image theory so far. In the recent years, with the introduction of competition mechanism and the establishment of the company. As subject position in the market, the building of corporate image gas been developed quickly in our country, and the development of practice imperatively requires the guide of scientific theory. On the basis of the analysis and summarization of the research of the predecessors, the present dissertation attempts to do some investigation and research work on the common and individual characteristics of corporate image factors of the companies in different industries in our country. The method of questionnaire survey is used in the present research. The subject sample is gathered on the basis of convenience and feasibility, and at the mean time, some consideration is also given to straticulate randomization principles. The subjects are asked to select one of their most familiar companies, and determine the important of even item in the questionnaire to the selected company(i.e. the importance assessment), and then, determine the grades the selected company gains on every item(i.e. the image assessment). The discriminant analysis of corporate image of different industries. The selected sample is grouped and coded according to the standard of industry classification. The discriminant analysis is done with the selected companies as the sample and the grades of image assessment as the variables. The result indicates that industry variable is an important standard of the classification of corporate image, and the companies in the same industry are more similar in corporate image. The analysis of the common and individual characteristics of corporate image of different industries. Firstly, in every industry, the items are sieved according to the grades of importance assessment, and exploratory factor analysis is done with grades of image assessment on the selected items as the variables. Secondly, the factors drawn from every industry in arranged in order according to their importance. The result indicates that the corporate image of different industries shares some common characteristics, for there exist common factors among different industries. In the mean while, the corporate image of different industries has its individual characteristics, that is, there is some difference in the domain of the factors, and in the order of the factors(including the difference of the principle factor).