685 resultados para Chinese Loess Plateau


Relevância:

100.00% 100.00%

Publicador:

Resumo:

IEECAS SKLLQG

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grain size distribution of bulk loess-paleosol and quartz chemically extracted from the loess/paleosol shows that mean size of the bulk samples is always finer than that of the quartz, The original aeolian depositions have been modified to various degrees by post-depositional weathering and pedogenic processes. The grain size distribution of the isolated quartz should be close to that of the primary aeolian sediment because the chemical pretreatment excludes secondary produced minerals. Therefore, the grain size of the quartz may be considered to more clearly reflect the variations of winter monsoon intensity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uranium isotopes were measured in waters and suspended particulate matters (SPM) of the main channel of Yellow River, China that were sampled during four field trips between August 2005 and July 2006. The results show that the concentration of dissolved U (2.04-7.83 mu g/l) and the activity ratio of U-234/U-238 (1.36-1.67) are much higher than the average U concentrations and activity ratios of global major rivers. Mass balance calculations using the results of simulated experiments and measurement data show that the section of the Yellow River between Lanzhou and Sanmenxia has its dissolved U derived from two sources: suspended sediments (68%) and groundwater/runoff from loess deposits (32%). Both sources are related to the heavy erosion of the Chinese Loess Plateau. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sanmen Gorge area is located in the southernmost margin of the Chinese Loess Plateau with well developed eolian deposit sequence for the past 2.6 Ma, providing a key site for further understanding of the evolution history of the East Asian monsoon since late Pliocene. This study attempted to characterize the stratigraphy and paleoclimate record of the loess-paleosol sequence in the Songjiadian section. The work involved includes systematic field investigation, paleomagnetic and rock magnetic analyses, grain size and major chemical composition analyses, and multiple proxy measurements of magnetic susceptibility, color reflectance and the ratio of CBD-dissolvable iron to the total iron (FeD/FeT). By comparisons of the Songjiadian section with well studied loess sections in the west of the Sanmen Gorge, the spatial variations of the East Asian monsoon was evaluated for some periods during which typical loess or paleosols developed. The following conclusions have been obtained. 1. Stratigraphic correlation and paleomagnetic result demonstrate that the loess-paleosol sequence in the Songjiadian section was accumulated from 2.6Ma, and is generally a complete and continuous loess sequence. However, notable differences from type loess sections have been identified for a few loess and paleosol units, featured by absence or anomalous thickness in the Songjiadian section. 2. Magnetic susceptibility and chromaticity records clearly reveal the loess-paleosol cycles, and indicate that the Sanmen Gorge area has been warmer and more humid than the Lingtai and Jingchuan sections in the western central Loess Plateau since the Early Pleistocene. 3. Grain size distribution patterns are typical of eolian dust, and show a great similarity between various units of loess and paleosols, and between the S32 and the underlying Red Clay through the Songjiadian profile, suggesting the eolian origin for the loess, paleosols and the Red Clay. 4. Comparison of the FeD/FeT curves from different loess sections indicates a stronger chemical weathering in the Songjiadian section and notable enhancement around 1800, 800 and 600 ka BP, implying the strengthening of the East Asian monsoon during these periods. In contrast, it was weakened at 1100 ka BP. Generally, the summer monsoon shows a gradually decreasing trend during the entire Pleostocene, but the spatial pattern typified by an increasing trend in weathering intensity from north to south remained the same. 5. The loess unit L9 in the Songjiadian section displays two geomagnetic field anomalies with the midpoint ages of 0.917 and 0.875 Ma respectively, with a segment of 12 ka. They are demonstrated to be equivalent to the Santa Rosa and Kamikatsura geomagnetic excursions. 6. Magnetite is the main magnetic carrier for both loess and paleosols. Maghemite concentration is higher in paleosols than in loess, and is an important carrier for the enhanced magnetic susceptibility in paleosols. Magnetic fabric analysis suggests a dominant N-S wind direction prevailing in the L9 and L15, while the summer winds were dominantly in NNE-SSW direction during the S8 period, notably differing from previous studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetation is very sensitive to climate change. Carbon isotopes in paleosol have been widely used to contruct the propotion of plants using C3 and C4 photosynthetic pathways. δ13C of Loess organic matter were analyzed on the loess- paleosols samples from Jingchuan sections and Luochuan S4—S5 sequence. This paper presents a long carbon isotope time series, covering the last 600kyr. δ13C record of Loess organic matter in Jingchuan is correlated with marine oxygen isotope records. Basing on former research work, this paper discusses temperature, rainfall and P CO2 effect on δ13Corg value. In the interglacial periods, carbon isotope is more sensitive than other proxies and indicates several climate fluctuations. The main conclusions are as follows: 1. Obtained δ13C composition from paleosols and loess sediments in Jingchuan range of -20.0‰ to -24.6‰, the maximum biomass of C4 is 35%, indicating a C3 and C4 mixed steppe with C3 dominated. C4 plant is not always expansion during paleosols periods. The minimum values of Jingchuan section appeared in S4 soil, and the vegetation was almost pure C3 plant at that time. δ13Corg value in S5-2 is also lower than loess in S5, reaching the minimum valus of S5 soil. 2. PCO2 variation has little impact on δ13Corg value in interglacial periods for the last 600kyr. The correlation between δ13Corg value curve and magnetic susceptibility curve as proxy of summer monsoon in general, means summer monsoon drive C4 plant expansion during glacial and interglacial. 3. The lowerδ13Corg values in S4 and S5-2 appear at Jingchuan and Luochuan, suggest origin from woodland or C3 grassland. Whatever vegetation it is, indicate strengthened East Asian summer monsoon and increase of precipitation. C4 plant percentage is lower in S5-1 and S1 which have stronger summer monsoon, than S0 and S2. And it also indicates increase of precipitation.δ13Corg values has not always non-linearity correlation with summer monsoon. 4. The maximum entroy spectral analysis of δ13C values of the last 600kyr indicates there is 21 kyr cycles in Loess sequence. It means that summer monsoon in the Chinese Loess Plateau also has the precession cycles like its origin low latitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical weathering intensity of loess deposits is largely determined by three factors: chemical weathering in source regions, grain size and post-depositional weathering. The third factor is influenced by climatic conditions such as precipitation and temperature, and the dust sedimentation rate in the area of deposition. Previous studies have shown that the (CaO+MgO+Na2O)/TiO2 ratio of decarbonated residue from loess is independent of grain size changes and thus is a reliable proxy for chemical weathering. However, the validity of (CaO+MgO+Na2O)/TiO2 to describe changes in monsoon intensity requires further study. In this study, 48 sections over the last glacial-interglacial cycle on the Chinese Loess Plateau were sampled, and the major elemental concentrations of 248 decarbonated residue samples were measured to investigate the utility of the (CaO+MgO+Na2O)/TiO2 ratio as a proxy for changes in monsoon intensity. Results show that the (CaO+MgO+Na2O)/TiO2 ratio, is relatively more sensitive to climate change than other indexes independent of grain size, and is not affected substantially by sedimentation rate. Assuming the weathering regime is relatively stable in the loess source regions, the (CaO+MgO+Na2O)/TiO2 ratio is a reliable proxy for the intensity of summer monsoon. A decreasing (CaO+MgO+Na2O)/TiO2 ratio from northwest to southeast both in loess and paleosols indicates that the Chinese Loess Plateau is in the control of the East Asian summer monsoon during both interglacial and glacial times. In addition, the spatial distributions of (CaO+MgO+Na2O)/TiO2 ratios show a greater north-south gradient during interglacial periods than during glacial periods. This may suggest that the spatial precipitation gradient, controlled by the summer monsoon, is steeper during interglacials than in glacials.