75 resultados para Cefazolin sodium
Resumo:
A tetrahydrofurfurylcyclopentadienyl sodium tetrahydrofuranate complex was prepared by the reaction of tetrahydrofurfurylcyclopentadiene with metallic sodium in THF. Its crystal structure was determined by X-ray analysis. In the crystal. the tetrahydrofuranate complex C4H7OCH2C5H4Na . THF adopts a puckered chain structure with an eta5-(C4H7OCH2)C5H4 ring connected by a bridging Na(THF) unit. The oxygen in the eta5-(C4H7OCH2)C5H4 ring is coordinated to the sodium atom.
Resumo:
In the present work, the mechanism of radiation-induced copolymerization of acrylamide (AM) with sodium acrylate (AANa) in aqueous solution was studied. A method to protect the copolymerization system from the crosslinking and a carbon-carbon mechanism to form gel in copolymerization reaction have been proposed. The condition to prepare the products with different molecular weight, especially with very high molecular weight were found.
Resumo:
Deposition potentials of Lithium and Sodium ions have been measured in binary chloride systems (LiCl-KCl, NaCl-KCl) by I-V curve method, to provide a theoretical base for preparing high purity Al-Li alloy by electrolysis in molten salt. The changes of free energy and enthalpy were calculated in terms of depolarization values on Al cathode. Thermodynamic meaning of depolarization was discussed in details and the empirical relation between binary alloy type and depolarization type was proposed. It is shown for the first time that the presence of a third element in Al-Li alloy can strengthen depolarization of Li ion at Al alloy cathode and give foundation for preparing high purity Al-Li-M ternary alloy. The effect of LiCl concentration on deposition potentials of Li ion at Al cathode in KCl-LiCl melt was studied and average active coefficient of LiCl was obtained.
Resumo:
The C-phycocyanin and the R-phycoerythrin were purified from the blue-green alga Spirulina platensis and red alga Polysiphonia urceolata respectively. Both sodium periodate and glutaraldehyde are effective coupling agents being capable of constructing the R-phycoerythrin-C-phycocyanin conjugate, which was also called phycobiliproteins energy transfer model. The two artificial conjugates constructed with different methods were purified by Sephadex G-200 chromatography respectively. Spectra analysis indicated that energy transfer occurred in the two conjugates. The conjugate with sodium periodate had the higher efficiency of energy transfer than that with glutaraldehyde conjugate.
Resumo:
Fish Lateolabrax japonicus were exposed to anion surfactant sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS) at 1 mg/l, respectively, for 6, 12 and 18 d, with one control group. Liver antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) and glutathione S-transferase (GST) were determined; brain acetylcholinesterase (AChE) and liver inducible nitric oxide synthase (NOS) activities were also measured. The results of the study indicated that these parameters made different, sometimes, adverse responses to SDBS and SDS exposure, such as the activity of NOS can be inhibited by SDBS and induced by SDS, the different physico-chemical characteristics of SDBS and SDS should be responsible for their effects on enzyme activities. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The effects of in vivo exposure of Mytilus galloprovincialis to two anionic surfactants (SDBS and SDS) on the molecular biomarker system were studied. After continuous exposure for 72 days, activities/levels of GST, GPx and GSH were significantly higher than in corresponding control groups following exposure to 3.000 mg/L SDS and SDBS. Activities of SOD and CAT were significantly inhibited by experimental SDBS (except CAT in 0.100 mg/L group), but not by SDS. Statistical analysis of enzyme activities/levels suggested that there were significant positive relationships between GST and GPx, and negative relationships were found between GSH and CAT, GSH and SOD. Amplified fragment length polymorphism (AFLP) results showed that a greater genotoxic effect was observed for SDBS than for SDS. Based on the above results, the biomarker system of mussels can be affected by the two anionic surfactants (>= 3.000 mg/L); it was more easily affected by SDBS than by SDS. Crown Copyright (C) 2009 Published by Elsevier Inc. All rights reserved.
Resumo:
Fish Lateolabrax japonicus were exposed to 0.1 and 1 mg/L of anion surfactant sodium dodecylbenzene sulfonate (SDBS) and to 2 and 20 mu g/L of benzo[a]pyrene (B[a]P) for 6, 12, and 18 days, with control and solvent control groups. Liver antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and glutathione S-transferase (GST), were determined; brain acetyleholinesterase (AChE) and liver inducible nitric oxide synthase (iNOS) activities were also measured. The results indicated that (1) L. japonicus avoided oxidative damage through antioxidant systems; (2) SOD, GPx, and GSH were induced, and GST was inhibited and then induced by B[a]P exposure; and (3) CAT, GPx, and AChE were induced while NOS was inhibited, and GST was induced and then inhibited by SDBS stress in experimental period. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The title coordination polymer, {[Ni3Na(OH)(C9H3O6)(2)( H2O)(11)] center dot 1.5H(2)O}(n), is built up from three independent Ni-II ions and one Na-I cation bridged by benzene-2,4,6-tricarboxylate ( BTC) ligands and water molecules. Three Ni-II ions are bridged by three bidentate carboxylate groups of three BTC ligands, two aqua ligands and one OH- unit, to form a trinuclear metal cluster. The Na-I cation is bonded to the Ni-II cluster by two bridging water molecules. One of the three BTC ligands bridges neighbouring clusters into one-dimensional chains, which are further connected through a complex hydrogen-bonding scheme, forming a three-dimensional suprastructure. The title complex is isomorphous with the previously reported Co-II complex.