75 resultados para Cathodic shielding


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion inhibition by some new triazole derivatives on mild steel in 1 M hydrochloric acid solutions has been investigated by weight loss test, electrochemical measurement, scanning electronic microscope analysis and quantum chemical calculations. The results indicate that these compounds act as mixed-type inhibitors retarding the anodic and cathodic corrosion reactions and do not change the mechanism of either hydrogen evolution reaction or mild steel dissolution. The studied compounds following the Langmuir adsorption isotherm, and the thermodynamic parameters were determined and discussed. The effect of molecular structure on the inhibition efficiency has been investigated by ab initio quantum chemical calculations. The electronic properties such as highest occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO) energy levels, energy gap (LUMO-HOMO), dipole moment and molecular orbital densities were calculated. (C) 2009 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the acceptance of the electrochemical rusting mechanism, oxygen reduction has been considered the main cathodic process, while H+ reduction has been overlooked for the past four decades because oxygen can be readily renewed due to the thin layer Of Solution film formed during atmospheric corrosion. This study shows that measurable hydrogen call be detected at the surface opposite to the corroding side of the specimen during wet-dry cycles, and a clear correlation exists between the quantities of hydrogen permeated through iron sheet and weight loss. Results Suggest the intrinsic importance of H+ reduction that merits further investigation. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Berberine was abstracted from coptis chinensis and its inhibition efficiency on corrosion of mild steel in 1 M H2SO4 was investigated through weight loss experiment, electrochemical techniques and scanning electronic microscope (SEM) with energy disperse spectrometer (EDS). The weight loss results showed that berbefine is an excellent corrosion inhibitor for mild steel immersed in 1M H2SO4. Potentiodynamic curves suggested that berbefine suppressed both cathodic and anodic processes for its concentrations higher than 1.0 x 10(-4) M and mainly cathodic reaction was suppressed for lower concentrations. The Nyquist diagrams of impedance for mild steel in 1 M H2SO4 containing berbefine with different concentrations showed one capacitive loop, and the polarization resistance increased with the inhibitor concentration rising. A good fit to Flory-Huggins isotherm was obtained between surface coverage degree and inhibitor concentration. The surface morphology and EDS analysis for mild steel specimens in sulfuric acid in the absence and presence of the inhibitor also proved the results obtained by the weight loss and electrochemical experiments. The correlation of inhibition effect and molecular structure of berberine was then discussed by quantum chemistry study. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibition effect of metal-free phthalocyanine (H2Pc), copper phthalocyanine (CuPc) and copper phthalocyanine tetrasulfuric tetrasodium salt (CuPc center dot S(4)center dot Na-4) on mild steel in I mol/l HCl in the concentration range of 1.0 X 10(-5) to 1.0 X 10(-3) mol/l was investigated by electrochemical test, scanning electron microscope with energy dispersive spectrometer (SEM/EDS) and quantum chemical method. The potentiodynamic polarization curves of mild steel in hydrochloric acid containing these compounds showed both cathodic and anodic processes of steel corrosion were suppressed, and the Nyquist plots of impedance expressed mainly as a capacitive loop with different compounds and concentrations. For all these phthalocyanines, the inhibition efficiency increased with the increase in inhibitor concentration, while the inhibition efficiencies for these three phthalocyanines with the same concentration decreased in the order Of CuPc center dot S(4)center dot Na-4 > CuPc > H2Pc according to the electrochemical measurement results. The SEM/EDS analysis indicated that there are more lightly corroded and oxidative steel surface for the specimens after immersion in acid solution containing 1.0 x 10(-3) mol/l phthalocyanines than that in blank. The quantum chemical calculation results showed that the inhibition efficiency of these phthalocyanines increased with decrease in molecule's LUMO energy, which was different from the micro-cyclic compounds. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The corrosion failure behavior of marine steel is affected by stress, which exists in offshore structures at sea-mud region. The sulfate reducing bacteria (SRB) in the sea-mud made the steel more sensitive to stress corrosion cracking (SCC) and weaken the corrosion fatigue endurance. In this paper, a kind of natural sea-mud containing SRB was collected. Both SCC tests by slow strain rate technique and corrosion fatigue tests were performed on a kind of selected steel in sea-mud with and without SRB at corrosion and cathodic potentials. After this, the electrochemical response of static and cyclic stress of the specimen with and without cracks in sea-mud was analyzed in order to explain the failure mechanism. Hydrogen permeation tests were also performed in the sea-mud at corrosion and cathodic potentials. It is concluded that the effect of SRB on environment sensitive fracture maybe explained as the consequences of the acceleration of SRB on corrosion rate and hydrogen entry into the metal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In corrosion medium, metals can deform under tensile stress and form a new active surface with the anodic dissolution of the metals being accelerated. At the same time, the anodic dissolution may accelerate the deformation of the metals. The synergy can lead to crack nucleation and development and shorten the service life of the component. Austenitic stainless steel in acidic chloride solution was in active dissolution condition when stress corrosion cracking (SCC) occurred. It is reasonable to assume that the anodic dissolution play an important role, so it's necessary to study the synergy between anodic dissolution and deformation of austenitic stainless steels. The synergy between deformation and anodic dissolution of AISI 321 austenitic stainless steel in an acidic chloride solution was studied in this paper. The corrosion rate of the steel increased remarkably due to the deformation-accelerated anodic and cathodic processes. The creep rate was increased while the yield strength was reduced by anodic dissolution. The analysis by thermal activation theory of deformation showed a linear relationship between the logarithm of creep rate and the logarithm of anodic cur-rent. Besides, the reciprocal of yield strength was also linearly dependent on the logarithm of anodic current. The theoretical deductions were in good agreement with experimental results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A comparative investigation of hot dip Zn-25Al alloy, Zn-55Al-Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn-25Al alloy coating is several times more durable than zinc coating of double thickness. At long exposure times, corrosion rate for the Zn-25Al alloy coating remains indistinguishable from that for the Zn-55Al-Si coating of similar thickness in tidal zone, and is two to three times lower than the latter in immersion zone. The decrease in tensile strength suggested that galvanized and Zn-55Al-Si coated steel suffer intense pitting corrosion in immersion zone. The electrochemical tests showed that all these coatings provide cathodic protection to the substrate metal; the galvanic potentials are equal to - 1,050, - 1,025 and - 880 mV (SCE) for zinc, Zn-25Al alloy and Zn-55Al-Si coating, respectively, which are adequate to keep the steel inside the immunity region. It is believed that the superior performance of the Zn-25Al alloy coating is due to its optimal combination of the uniform corrosion resistance and pitting corrosion resistance. The inferior corrosion performance by comparison of the Zn coating mainly results from its larger dissolution rate, while the failure of the Zn-55Al-Si coating is probably related to its higher susceptibility to pitting corrosion in seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The method for the measurement of the pure mechanical wear loss for 321 stainless steel, 1045 steel and pure iron in the study of the synergy between corrosion and wear was studied, The methods studied included the measurement in distilled water, by cathodic protection and by adding inhibitor KI, and all were compared with the wear loss in air. The experiment showed that the pure mechanical wear losses and friction coefficients obtained by the three methods were close to each other and can be used to calculate the various wear components in the study of the interaction of corrosion and wear, but the measurements in distilled water for pure iron and 1045 steel are not recommended due to their corrosion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electrochemical measurement, quantum chemical method, and scanning electron microscopy (SEM) were performed to investigate the inhibitive effect of 2,3,5-triphenyl-2H-tetrazolium chloride (TTC) and 2,4,6-tri(2-pyridyl)-s-triazine(TPT) on the corrosion of mild steel in 1mol.L-1 HCl at room temperature. Impedance spectroscopy measurement showed that the polarization resistance increased and that double layer capacitance decreased with the increase in the inhibitive concentration, and the results of potentiodynamic polarization showed that the inhibitors suppressed both cathodic and anodic processes of steel corrosion without change in the mechanism. Higher the orbital density distribution strength of the lowest unoccupied molecular orbital, higher is the molecule dipole, and lower energy gap between the energy of the highest occupied molecular orbital and the energy of the lowest unoccupied molecular orbital resulted in higher inhibitory efficiency. The results of SEM analysis showed that the metal was protected from aggressive corrosion by the addition of TTC and TPT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inhibiting effect and mechanism of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylicacid(ciprofloxacin), 1-ethyl-6-fluoro-1,4-dihydro-4-oxo-7-(1-piperazinyl)-3-quinoline carboxylic acid (norfloxacin) and (-)-(S)-9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl-1-piperazinyl)-7-oxo-7 H-pyrido(1,2,3-de)-1,4-benzoxazine-6 carboxylic acid (ofloxacin) on the corrosion of mild steel in 1 mol/L HCl have been studied using electrochemical method, quantum chemical method and SEM at 303 K. The potentiodynamic results showed that these compounds suppressed both cathodic and anodic processes of mild steel corrosion in 1 mol/L HCl. The impedance spectroscopy showed that R-p values increased, and C-dl values decreased with the rising of the working concentration. Quantum chemical calculation showed that there was a positive correlation between some inhibitors structure properties and the inhibitory efficiency. The inhibitors function through adsorption followed Langmuir isotherm, and chemisorption made more contribution to the adsorption of the inhibitors on the steel surface compared with physical adsorption. SEM analysis suggested that the metal had been protected from aggressive corrosion because of the addition of the inhibitors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purines and its derivatives, such as, guanine, adenine, 2,6-diaminopurine, 6-thioguanine and 2,6-dithiopurine, were investigated as corrosion inhibitors for mild steel in 1 M HCl solution by weight loss measurements, electrochemical tests and quantum chemical calculations. The polarization curves of mild steel in the hydrochloric acid solutions of the purines showed that both cathodic and anodic processes of steel corrosion were suppressed. The Nyquist plots of impedance expressed mainly as a depressed capacitive loop with different compounds and concentrations. For all these purines, the inhibition efficiency increased by increasing the inhibitor concentration, and the inhibition efficiency orders are 2,6-dithiopurine > 6-thioguanine > 2,6-diaminopurine > adenine > guanine with the highest inhibiting efficiency of 88.0% for 10(-3) M 2,6-dithiopurine. The optimized structures of purines, the Mulliken charges, molecular orbital densities and relevant parameters were calculated by quantum chemical calculations. The quantum chemical calculation results inferred that the adsorption belong to physical adsorption, which might arise from the pi stacking between the pi electron of the purines and the metal surface. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments on the corrosion fatigue behaviour of welded joints of the steel for marine platform in air and seawater, and of the joints in seawater with cathodic protection, yielded data for linear regression to obtain fatigue life curves (Delta S-N-f). The laws of corrosion fatigue in welded joints of test steel are discussed with reference to those of A(587) and A(131) steel. In these experiments, the fatigue damage occurring at all welded joints around the weld interface resulted in the cracks and fractures. The fatigue life of the specimens in seawater with cathodic protection is longer than that in seawater Without protection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cyclic voltammetry, electrochemical impedance spectroscopy, and rotating disk electrode voltammetry have been used to study the effect of chloride ions on the dissolved oxygen reduction reaction (ORR) on Q235 carbon steel electrode in a 0.02 M calcium hydroxide (Ca(OH)(2)) solutions imitating the liquid phase in concrete pores. The results indicate that the cathodic process on Q235 carbon steel electrode in oxygen-saturated 0.02 M Ca(OH)(2) with different concentrations of chloride ions contain three reactions except hydrogen evolution: dissolved oxygen reduction, the reduction of Fe(III) to Fe(II), and then the reduction of Fe(II) to Fe. The peak potential of ORR shifts to the positive direction as the chloride ion concentration increases. The oxygen molecule adsorption can be inhibited by the chloride ion adsorption, and the rate of ORR decreases as the concentration of chloride ions increases. The mechanism of ORR is changed from 2e(-) and 4e(-) reactions, occurring simultaneously, to quietly 4e(-) reaction with the increasing chloride ion concentration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It was found that the corrosion rate of steel in the sea mud with sulfate-reducing bacteria (SRB) could be as high as 10 times of that in the sea mud without SRB. And the hydrogen permeation reaction would occur when metals were corroded. So it is necessary to investigate the effect of living SRB on hydrogen permeation in the sea mud. Cathodic potential was often added to metals in order to protect them. But hydrogen permeation could be affected by the cathodic potential. So it is also necessary to study the effect of cathodic potential on hydrogen permeation. In this paper, the hydrogen permeation actions of APT X56 steel in the sea mud with and without SRB at corrosion and cathodic potential were studied with an improved Devanathan-Stachurski's electrolytic cell. Experimental results showed that during the growth of SRB, the current density curve of hydrogen permeation was accordant with the growth curve of SRB. But the hydrogen permeation current density of APT X56 steel hardly changed in the sterilized sea mud. Compared with the hydrogen permeation current density of APT X56 steel in the sterilized sea mud, the hydrogen permeation of APT X56 steel in the sea mud could be accelerated by living SRB. Experimental results also showed that the hydrogen permeation current density increased rapidly when the cathodic potential was added to the three-electrode system of the cathodic cell, and then the hydrogen permeation current density could obtain a stable value slowly. So the cathodic potential added to the cathodic cell could accelerate hydrogen permeation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxygen spillover and back spillover on Pt/TiO2 catalysts have been studied by a potential dynamic sweep method. The characteristics of I-V profiles of Pt/TiO2 electrodes in the three potential sweep regions are different from those of Pt and TiO2 electrodes. The catalytic role of Pt/TiO2 in oxygen spillover and back spillover is identified. It decreases, and the electrochemical oxygen adsorption (or desorption) increases with elevating temperature of hydrogen post-treatment of Pt/TiO2; to a certain extent (hydrogen post-treatment of Pt/TiO2 at 700 degrees C), the control step of oxygen electrode process (anodic oxidation or cathodic reduction) changes from oxygen diffusion to electrochemical oxygen adsorption or desorption, respectively. Increasing the amount of Pt supported on TiO2 enhances the processes of oxygen spillover and back spillover. (C) 1999 Elsevier Science B.V. All rights reserved.