112 resultados para Cathode


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work reports on the design and performance evaluation of a miniature direct methanol fuel cell(DMFC)integrated with an electro_osmotic(EO)pump for methanol delivery.Electro-osmotic pumps require minimal parasitic power while boasting no moving parts and simple fuel cell integration.Here ,aneletro-osmotic pump is realized from a commercially available porous glass frit.We characterize a custom-fabricated DMFC with a free convection cathode and coupled to an extennal electro-osmotic pump operated at applied potentials of 4.0,7.0,and 10V.Maximum gross power density of our free convection DMFC(operated at 50°)is 55 mW/cm2 using 4.0 mol/L concentration methanol solution supplied by the EO pump.Experimental results show that electro-osmotic pumps can deliver 2.0,4.0 and 8.0mol/L methanol/water mixtures to DMFCs while utilizing ~5.0% of the fuel cell power.Furthermore ,we discuss pertinent design considerations when using electro-osmotic pumps with DMFCs and areas of further study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A soluble nonionic surfactant, polyethylenimine 80% ethoxylated (PEIE) solution, was used as the electron injection material in inverted bottom-emission organic light emitting diodes (OLEDs). The transparent PEIE film was formed on indium-tin-oxide cathode by simple spin-coating method and it was found that the electron injection was greatly enhanced. The devices with PEIE electron injection layer had achieved significant enhancement in luminance and efficiency. The maximum luminance reached 47 000 cd/m(2), and the maximum luminance efficiency and power efficiency arrived at 19.7 cd/A and 10.6 lm/W, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate highly efficient inverted bottom-emission organic light-emitting diodes (IBOLEDs) by using cesium hydroxide (CsOH) doped tris-(8-hydroxyquinoline) aluminum (Alq(3)) as the electron injection layer on indium tin oxide cathode, which could significantly enhance the electron injection, resulting in a large increase in luminance and efficiency. The maximum luminance, current efficiency, and power efficiency reach 21 000 cd/cm(2), 6.5 cd/A, and 3.5 lm/W, respectively, which are 40%-50% higher in efficiency than that of IBOLEDs with cesium carbonate (Cs2CO3) doped Alq(3) as the electron injection layer, where the efficiencies are only 4.5 cd/A and 2.2 lm/W.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the effects of thermal annealing before and after cathode deposition on poly(3-hexylthiophene)(P3HT)/[6,6]-phenyl C61-butyric acid methyl ester (PCBM) blend photovoltaic cells with different cathode buffer layers. The introduction of cathode buffer layer such as lithium fluoride (LiF) and calcium oxide (CaO) in pre-annealing cells can increase the open-circuit voltage (V-oc) and the power conversion efficiency (PCE). Post thermal annealing after cathode deposition further enhanced the PCE of the cells with LiF/Al cathode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 mu m is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A center dot cm(-2). The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon black and titanium dioxide supported iron tetraphenylporphyrin (FeTPP/TiO2/C) catalysts for oxygen reduction reaction (ORR) were prepared by sol-gel and precipitation methods followed by a heat-treatment at temperatures of 400-1000 degrees C. The FeTPP/C and TiO2/C were also studied for comparison. The FeTPP/TiO2/C pyrolyzed at 700 degrees C exhibits significantly improved stability while maintaining high activity towards ORR in comparison with the FeTPP/C counterpart. The electrochemical study combined with XRD, XPS, and SEM/EDX analyses revealed that the appropriate dispersion of TiO2 on the surface of FeTPP/TiO2/C catalysts, which depending on heat-treatment temperature, plays a crucial role in determining the activity and stability of catalysts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A prominent methanol-tolerant characteristic of the PtCeOx/C electrocatalyst was found during oxygen reduction reaction process. The carbon-supported platinum modified with cerium oxide (PtCeOx/C) as cathode electrocatalyst for direct methanol fuel cells was prepared via a simple and effective route. The synthesized electrocatalysts were characterized by X-ray diffraction and transmission electron microscopy. It was found that the cerium oxide within PtCeOx/C present in an amorphous form on the carbon support surface and the PtCeOx/C possesses almost similar disordered morphological structure and slightly smaller particle size compared with the unmodified Pt/C catalyst.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study demonstrates a novel compartment-less glucose/O-2 biofuel cell (BFC) based on highly ordered mesoporous carbons (OMCs) with three-dimensionally (3D) interconnected and ordered pore structures. OMCs are used as supports for both stably confining the electrocatalyst (i.e., meldola's blue, MDB) for NADH oxidation and the anodic biocatalyst (i.e., NAD(+)-dependent glucose dehydrogenase, GDH) for glucose oxidation, and for facilitating direct electrochemistry of the cathodic biocatalyst (i.e., laccase, LAC) for O-2 electroreduction. In 0.10 M pH 6.0 PBS containing 20 mM NAD(+) and 60 mM glucose under the air-saturated atmosphere, the open circuit voltage (0.82 V) and the maximum power output (38.7 mu W cm(-2) (at 0.54V)) of the assembled compartment-less OMCs-based BFC are both higher than those of carbon nanotubes (CNTs)-based BFC (0.75 V and 2.1 mu W cm(-2) (at 0.46 V)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Efficient inverted top-emitting organic light-emitting diodes with aluminum (Al) as both the cathode and semitransparent anode are investigated. It is found that introduction of the ultrathin molybdenum trioxide (MoO3)/fullerene (C-60) bilayer structure between the low work function Al top anode and the hole-transporting layer dramatically enhances the device performance as compared to the devices with sole MoO3 or C-60 buffer layer. The ultraviolet photoemission spectroscopy and x-ray photoelectron spectroscopy indicate that the hole injection barrier between Al anode and hole-transporting layer is effectively reduced via strong dipole effect at Al/MoO3/C-60 interfaces with its direction pointing from Al to C-60.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By introducing an effective electron injection layer (EIL) material, i.e., lead monoxide (PbO), combined with the optical design in device structure, a high efficiency inverted top-emitting organic light-emitting diode (ITOLED) with saturated and quite stable colors for different viewing angles is demonstrated. The green ITOLED based on 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one exhibits a maximum current efficiency of 33.8 cd/A and a maximum power efficiency of 16.6 lm/W, accompanied by a nearly Lambertian distribution as well as hardly detectable color variation in the 140 forward viewing cone. A detailed analysis on the role mechanism of PbO in electron injection demonstrates that the insertion of the PbO EIL significantly reduces operational voltage, thus greatly improving the device efficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lead(IV) dioxide (PbO2) has been used as the electron injection layer (EIL) to realize high-efficiency inverted top-emitting organic light-emitting diodes (I-TOLEDs). It can be seen that the inserting of the PbO2 EIL significantly reduces operational voltage, thus greatly improving the current efficiency and power efficiency of fabricated I-TOLEDs. The 10-(2-benzothiazolyl)-1, 1, 7, 7-tetramethyl-2, 3, 6, 7-tetrahydro-1H, 5H, 11H-[1] benzopyrano [6, 7, 8-ij] quinolizin-11-one (C545T)-based I-TOLEDs with the PbO2 EIL exhibit a maximum current efficiency of 31.6 cd A(-1) and a maximum power efficiency of 14.3 lm W-1, which are both higher than 22.5 cd A(-1) and 5.4 lm W-1 of the I-TOLEDs with LiF as the EIL respectively. A detailed analysis with respect to the role mechanism of PbO2 in electron injection has been presented. The improvement in EL performance is attributed to the formation of the interfacial dipoles at the electrode interface due to charge transfer between PbO2 and Alq(3).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monodisperse, submicrometer-scale platinum (Pt) colloidal spheres were prepared through a simple direct chemical reduction of p-phenylenediamine (PPD)-chloroplatinic acid (H2PtCl6) coordination polymer colloids. It was found that the prepared Pt colloids had the similar size and morphology with their coordination polymer precursors, and the prepared Pt colloids with rough surfaces were three-dimensional (3D) structured assemblies of high-density small Pt nanoparticles. The electrochemical experiments confirmed that the prepared Pt colloids possessed a high electrocatalytic activity towards mainly four-electron reduction of dioxygen to water, making the prepared Pt colloids potential candidates for the efficient cathode material in fuel cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trivalent dysprosium (Dy3+)-activated beta-gallium oxide (beta-Ga2O3) phosphors were synthesized by solid-state (SS), coprecipitation (CP), and citrate gel (CG) methods, respectively. The resulting beta-Ga2O3:Dy3+ phosphors were well characterized by X-ray diffraction, field-emission scanning electron microscopy (FESEM), and by photoluminescence and cathodoluminescence spectra. The phosphors prepared by different methods show different luminescence properties under the excitation of UV and low-voltage cathode rays. There exists an energy transfer from the beta-Ga2O3 host lattices to Dy3+, and the energy transfer efficiency was higher in the CG-derived phosphors than those of the SS- and CP-derived phosphors. Factors influencing the intensity of luminescence and the energy transfer efficiency from beta-Ga2O3 host to Dy3+ in beta-Ga2O3:Dy3+ phosphors were investigated in detail. It is shown that the CG method is the most respected process for the preparation of beta-Ga2O3:Dy3+ phosphors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blue emitting GdNbO4: Bi3+ powder phosphors for field emission displays were prepared by a solid state reaction. Both photoluminescence and cathodoluminescence properties of the materials were investigated. GdNbO4 itself shows only a very weak luminescence in the blue spectral region. By doping Bi3+ in GdNbO4, the luminescence intensity was improved greatly. The emission spectrum of the GdNbO4: Bi3+ consists of a broad band with maximum at 445 nm (lifetime = 0.74 mu s; CIE chromaticity coordinates: x = 0.1519 and y = 0. 1196) for both UV and low voltage (1-7 kV) cathode ray excitation. In GdNbO4:Bi3+ phosphors, the energy transfer from NbO43- to activator Bi3+ occurred.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The membraneless biofuel cell (BFC) is facile prepared based on glucose oxidase and laccase as anodic and cathodic catalyst, respectively, by using 1,1'-dicarboxyferrocene as the mediators of both anode and cathode. The BFC can work by taking glucose as fuel in air-saturated solution, in which air serves as the oxidizer of the cathode. More interestingly, the fruit juice containing glucose, e.g. grape, banana or orange juice as the fuels substituting for glucose can make the BFC work. The BFC shows several advantages which have not been reported to our knowledge: (1) it is membraneless BFC which can work with same mediator on both anode and cathode; (2) fruit juice can act as fuels of BFCs substituting for usually used glucose; (3) especially, the orange juice can greatly enhance the power output rather than that of glucose, grape or banana juice. Besides, the facile and simple preparation procedure and easy accessibility of fruit juice as well as air being whenever and everywhere imply that our system has promising potential for the development and practical application of BFCs.