80 resultados para Carbon Compounds, Inorganic
Resumo:
In chemical ionization mass spectrometry (CIMS) gas phase C-60(+) or C-60 can react with fragment ions from three chloromethane and four multichloroethane molecular ions via ion-molecule reactions. A dozen of gas-phase adduct ions of C-60 are observed, and most of them contain chlorine atoms. The results of the comparison and analysis show that the relative intensities of adductions are not directly proportional to the corresponding fragment ions in the MS of reagents,which implies that some fragment ions containing radicals are more reactive with C-60(+) or C-60. This indicates that the alkene-like C-60(+) or C-60 can act as a radical sponge in addition reactions.
Resumo:
A modified method for dispersing platinum particles on a glassy carbon (GC) electrode was investigated. The ultramicro Pt particle-modified electrode obtained exhibited high catalytic stability and activity towards the oxidation of some halide ions (Br-, I-) and inorganic sulfur species (S2O32-, SO32- and SCN-). These anions were separated and detected by using ion chromatography and electrochemical detection via this novel dispersed Pt particles-GC working electrode. The detection limits were 20 ng/ml for Br-, 1.0 ng/ml for I-, 10 ng/ml for SO32- and 4.0 ng/ml for SCN-. This method was employed for the analysis of industrial and environmental waste waters.
Resumo:
A sensitive high-performance liquid chromatographic method has been developed for the quantitative determination of aminopyrine (AM) and its metabolite 4-aminoantipyrine (AAN). The method utilizes reverse-phase chromatography/amperometric detection with a glassy carbon electrode dispersed with alpha-arumina particles as the working electrode, on which the oxidation of AM and AAN was greatly improved compared with that on a bare glassy carbon electrode. As a result, the detection limit was as low as 1.4 ng for AM and 0.8 ng for AAN, and the calibration plots for the above compounds have wide linear ranges from 100 ng/mL to 100 mu g/mL and 60 ng/mL to 80 mu g/mL (for AM and AAN, respectively). The above method was applied for the detection of these materials in human urine with satisfactory results.
Resumo:
A glassy carbon electrode was pretreated electrochemically and was coated with a copolymer of maleic acid anhydride attached with Eastman-AQ55D (MA/AQ). The voltammetric behavior of a series of biologically important compounds, such as dopamine, L-DOPA, D
Resumo:
A glassy carbon electrode coated with an electrodeposited film of mixed-valent cobalt oxide/cyanocobaltate (Co-O/CN-Co) enabled hydrazine compounds to be catalytically oxidized at the greatly reduced overpotential and in a wide operational pH range (pH 2.0-7.0). Electrocatalytic activity at the Co-O/CN-Co modified electrode was evaluated with respect to solution pH, film thickness, supporting electrolyte ions, potential scan rate, operating potential, concentration dependence and other variables. The Co-O/CN-Co film electrode was completely compatible with a conventional reversed-phase liquid chromatographic (RP-LC) system. Practical RP-LC amperometric detection (RP-LCEC) of hydrazines was performed. A dynamic linear response range over three orders of magnitude and a detection limit at the pmol level were readily obtained. The Co-O/CN-CO film electrode exhibited excellent electrocatalytic stability in the flowing streams.
Resumo:
The C-H stretching, C-H bending, C-C stretching and the low-frequency vibrational regions have been investigated by Raman spectroscopy for [n-CnH2n+1NH3]2ZnCl4 with n = 7-12, 16. The frequencies and relative intensities are related to the length of the carbon chain in the molecules and present the odd-even effect of the carbon atom numbers in the chains. Some changes in the spectra are interpreted in terms of the different molecular packing.
Resumo:
The adsorption of cationic surfactant cetylpyridinium bromide (CPB) on a glassy carbon (GC) electrode surface has been studied by spectroelectrochemistry with a long optical path length thin-layer cell (LOPTLC) for the first time. A fine adsorption isotherm of CPB molecules from an aqueous solution containing 0.10 M KBr has been obtained over the range of (1.00-8.00) x 10(-5) M. From theoretical calculation and experimental data, adsorption of CPB on the GC electrode surface shows four distinct orientations and three large orientation transitions. Compared with the ordinary isotherm, the differential isotherm is more characteristic and would be suitable for the study of orientation transitions of organic compounds. With a theoretical treatment of the adsorption isotherm, four orientations of adsorbed CPB on a GC electrode surface coincide with the Frumkin-Langmuir type. From adsorption parameters the Frumkin-Langmuir equations, the adsorption free energy and, therefore, the equilibrium constants of orientation transitions of the CPB molecule can be obtained.
Resumo:
The redlip mullet, Liza haematocheila, is a common species in polyculture as a scavenger in China. Feeding on detritus, redlip mullet transports nutrients from sediments up into the water column and converts them into forms that can be utilized by phytoplankton and affects the relative abundance of detritus and dissolved inorganic nutrients to phytoplankton, zooplankton and other fishes. We used nitrogen and carbon as the indicators in this study to measure the scavenging ability, which means intake of nitrogen or carbon by redlip mullet, and the loss of nutrients. Temperature and body weight significantly affected growth nitrogen, faecal nitrogen and faecal carbon. At a certain temperature, the proportion of growth nitrogen or growth carbon increased while the proportion of excretion nitrogen or respiration carbon decreased with increasing body weight.
Resumo:
Elemental (TOC, TN, C/N) and stable carbon isotopic (delta(13)C) compositions and n-alkane (nC(16-38)) concentrations were measured for Spartina alterniflora, a C-4 marsh grass, Typha latifolia, a C-3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. delta(13)C values of organic matter preserved in the upper fresh water site sediment were more negative (-23.0+/-0.3) as affected by the C-3 plants than the values of organic matter preserved in the sediments of middle (-18.9+/-0.8) and mud flat sites (-19.4+/-0.1) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC(21) to nC(33) long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC(29) was the most abundant homologue in all samples measured. Both delta(13)C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Cyanobacteria possess a delicate system known as the carbon concentrating mechanism (CCM), which can efficiently elevate the intracellular inorganic carbon (Ci) concentration via active transportation. The system requires energy supplied by photosystems; therefore, the activity of the Ci transporter is closely related to light intensity. However, the relationship between CCM and light intensity has rarely been evaluated. Here, we present an improved quantitative model of CCM in which light is incorporated, and developed a CCM model that modified after Fridlyand et al. in 1996. Some equations used in this model were inducted to describe the relationship between transport capacity and light intensity, by which the response of the CCM to light change is simulated. Our results indicate that the efficiency of the carbon concentrating system is sensitive to light intensity. When the external Ci concentration was low, CO2 uptake dominated the total Ci uptake with increasing light intensity, while under high external Ci concentrations HCO3- uptake primarily contributed to the total Ci uptake. Variations in the ratio of energy allocated between the transport systems could markedly affect the operation of CCM. Indeed, our simulations suggest that various combinations of Ci fluxes can provide a possible approach to detect the way by which the cell distributes energy produced by the photosystems to the two active Ci transport processes. The proportion of the energy consumed on CCM to the total energy expenditure for the fixation of one CO2 molecule was determined at 18%-40%.
Resumo:
Research related to carbon geochemistry and biogeochemistry in the East China Sea is reviewed in this paper. The East China Sea is an annual net sink for atmospheric CO, and a large net source of dissolved inorganic carbon to the ocean. The sea absorbs CO, from the atmosphere in spring and summer and releases it in autumn and winter. The East China Sea is a CO, sink in summer because Changjiang River freshwater flows into it. The net average sea-air interface carbon flux of the East China Sea is estimated to be about 4.3 X 10(6) t/y. Vertical carbon transport is mainly in the form of particulate organic carbon in spring; more than 98% of total carbon is transported in this form in surface water, and the number exceeds 68% in water near the bottom. In the southern East China Sea, the average particulate organic carbon inventory was about one-tenth that of the dissolved organic carbon. Research indicates that the southern Okinawa Trough is an important site for particulate organic carbon export from the shelf. The annual cross-shelf exports are estimated to be 414 and 106 Gmol/y for dissolved organic carbon and particulate organic carbon, respectively. Near-bottom transport could be the key process for shelf-to-deep sea export of biogenic and lithogenic particles.
Resumo:
Five minor sesquiterpenes (1-5) with two novel carbon skeletons, together with a minor new oplopane sesquiterpene ( 6), have been isolated from the brown alga Dictyopteris divaricata. By means of spectroscopic data including IR, HRMS, 1D and 2D NMR, and CD, their structures including absolute configurations were assigned as (+)-(1R, 5S, 6S, 9R)3- acetyl-1-hydroxy-6-isopropyl-9-methylbicyclo[4.3.0] non-3-ene ( 1), (+)-(1R, 3S, 4S, 5R, 6S, 9R)-3-acetyl-1,4-dihydroxy-6- isopropyl-9-methylbicyclo[4.3.0] nonane (2), (+)-(1R, 3R, 4R, 5R, 6S, 9R)-3-acetyl-1,4-dihydroxy-6-isopropyl-9-methylbicyclo[ ;4.3.0] nonane ( 3), (+)-(1S, 2R, 6S, 9R)-1-hydroxy-2-(1-hydroxyethyl)-6-isopropyl-9-methylbicyclo[4.3.0] non-4-en-3-one (4), (-)-( 5S, 6R, 9S)-2-acetyl-5-hydroxy-6-isopropyl-9-methylbicyclo[4.3.0] non-1-en-3-one ( 5), and (-)-( 1S, 6S, 9R)- 4-acetyl- 1-hydroxy-6-isopropyl-9-methylbicyclo[ 4.3.0] non-4-en-3-one ( 6). Biogenetically, the carbon skeletons of 1-6 may be derived from the co-occurring cadinane skeleton by different ring contraction rearrangements. Compounds 1-6 were inactive (IC50 > 10 mu g/mL) against several human cancer cell lines.
Resumo:
The hyphenated technique of high performance liquid chromatography coupled with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) was applied to the simultaneous determination of five organotin compounds (trimethyltin, dibutyltin, tributyltin, diphenyltin and triphenyltin) in seawater samples. Agilent TC-C18 column was used for the separation, the mobile phase of HPLC was CH3CN : H2O: CH3COOH=65 : 23 : 12 (phi), 0.05% TEA, and pH value was adjusted to 3.0 by diluent ammonia. The flow rate was 0.6 mL . min(-1). Five mixed organotin compounds in a mix standard solution from 100 to 0.5 mu g . L-1 were applied for the method assessment. The experimental results indicate that the correlation coefficient of calibration curves (R-2) for each organotin compound was over 0.998 and the detection limits of the five organotin compounds were lower than 3 ng . L-1. Different mixed organic solvents including dichloromethane or toluene were used for extraction of organotin and the extraction condition of organotin from seawater was optimized. The 100 mL seawater acidized by hydrochloric acid was extracted by 10 mL carbon dichloride (CH2Cl2) with 2% tropolone for 10 min twice. Extracted organic solvents were mixed And blown to one drop by nitrogen with the rate of 1.7 mL . min(-1), then 1 mL acetonitrile was added to the drop for redissolving the organotin compounds. Finally, the mixed redissolution was filtered by 0.22 mu m organic filter membrane before analysis. it was found that the only organotin compound in seawater was triphenyltin (TPHT) and the content was 53.2 ng . L-1. The recoveries test from the standard addition for diphenyltin (DPHT), dibutyltin (DBT), tributyltin (TBT) and triphenyltin (TPHT) were over 80%. However, the recovery for trimethyltin (TMT) was relatively low and the value was 50%. The reason might be attributed to the decomposition or adsorption of those compounds during the extraction procedure. Further study on this subject is in progress.
Resumo:
Nine novel triazole compounds containing ester group were designed and synthesized. Their structures were confirmed by elemental, H-1 NMR and IR analyses, and optimized by means of DFT (Density Functional Theory) method at the B3LYP/6-31G* level. Based on the quantum-chemical calculation results and the Pearson coefficients between FA and quantumchemical parameters, V, LogP, MR and E-HOMO are shown to be the important relative factors which affect FA of the title compounds.
Resumo:
The seed oil from Nitraria tangutorum samples was obtained by supercritical carbon dioxide extraction methods. The extraction parameters for this methodology, including pressure, temperature, particle size and extraction time, were optimized. The free fatty acids in the seed oil were separated with a pre-column derivation method and 1,2-benzo-3,4-dihydrocarbazole-9-ethyl-p-toluenesulfonate (BDETS) as a labeling regent, followed by high-performance liquid chromatography (HPLC) with fluorescence detection. The target compounds were identified by mass spectrometry with atmospheric pressure chemical ionization (APCI in positive-ion mode). HPLC analysis shows that the main compositions of the seed oil samples were free fatty acids (FFAs) in high to low concentrations as follows: linoleic acid, oleic acid, hexadecanoic acid and octadecanoic acid. The assay detection limits (at signal-to-noise of 3:1) were 3.378-6.572 nmol/L. Excellent linear responses were observed, with correlation coefficients greater than 0.999. The facile BDETS derivatization coupled with mass spectrometry detection allowed the development of a highly sensitive method for analyzing free fatty acids in seed oil by supercritical CO2 extraction. The established method is highly efficient for seed oil extraction and extremely sensitive for fatty acid profile determination. (C) 2007 Elsevier B.V. All rights reserved.