73 resultados para Calcium titanate
Resumo:
The VUV-UV spectra of rare earth ions activated calcium borophosphate, CaBPO5:RE (RE = Ce3+, sm(3+), Eu2+, Eu3+, Tb3+ and Dy3+) were determined. The bands at about 155 nm in the VUV excitation spectra are attributed to the host lattice absorptions. The bands at 166 and 190 nm for the sample CaBPO5:Sm have been considered as related to the f-d transition and the charge transfer band (CTB) of Sm3+ ions, and the band at 169 nm for the sample CaBPO5:Dy is assumed to be connected with the f-d transition of the Dy3+ ions in CaBPO5. The partial reduction of Eu3+ CaBPO5:Eu prepared by high temperature solid state reaction in air is confirmed by the VUV-UV spectra.
Resumo:
XAFS (EXAFS and XANES) at Eu-L-3 edge were used to determine the local structure and the valences of europium in CaBPO5:Eu prepared in air. The results of EXAFS showed that the doped europium atoms were nine-coordinated by oxygen atoms and the distances of bond Eu-O were 2.39 Angstrom in the host lattice. XANES at Eu-L-3 edge exhibited that Eu2+ and Eu3+ coexisted in the matrix. The luminescent spectrum of the material excited by VUV at 147 nm presented a similar spectrum with that excited by f-f transition of Eu2+ at 396 nm and f-d transition of Eu2+ at 312 nm. The broad emission band due to both 4f(6)5d - 4f(7) transition of EU2+ and f - f transition of Eu3+ could be observed in emission spectra, which indicated that the trivalent europium ions were reduced in air in the matrix at high temperature by the defects [V-Cn]" formed by aliovalent substitution between Ca2+ and Eu3+ ions. The UV excitation spectrum showed the typical f-f transition of Eu3+ and f-d transition of Eu2+. The bands with the maxima at about 113 and 158 nm in VUV excitation spectrum were assigned to originate from the absorption of the host lattice.
Resumo:
Rare earth(III)-histidine (His)- tryptophane (Trp). Ca(II)-His-Trp and Zn(II)-His-Trp systems were studied by potentiometric titration and computer simulation under physiological conditions. The species of the systems and their stability constants were determined. The distributions of species of rare earth(III), Ca(II) and Zn(II) were discussed.
Resumo:
Eu3+-activated calcium silicate (CaO-SiO2:Eu3+) luminescent films were prepared by the sol-gel method. The structural evolution of the film was studied by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the luminescence properties of the phosphor films were investigated as a function of heat treatment temperature. The XRD study indicates that a kilchoanite phase forms in the film sintered at 800 degreesC, which is different from that in gel powder treated under the same conditions. The SEM results show that the film thickness decreases and the particles in the film become smaller with increasing heat treatment temperature. The CaO-SiO2:Eu film shows the characteristic emission of Eu3+ under UV excitation, with the Eu3+ D-5(0)-->F-7(2) band (616 nm) being the most prominent. A large difference in the Eu3+ lifetime is observed between the film samples treated at 500 and 700 degreesC (or above). Concentration quenching occurs when the Eu3+ doping concentration is above 6 mol% of Ca2+ in the film.
Resumo:
Rare earth (III)-Asp-Arg and Ca(II)-Asp-Arg systems were studied by potentiometric titration under physiological conditon. The species of each system were determined. The distribution of Tb (III) and Ca(II) species was discussed, as well as in the quaternary system of Tb(III)-Ca(II)-Asp-Arg.
Resumo:
The influence of bond valence on bond covalency in La1-xCaxCrO3(x =0.0, 0.1, 0.2, 0.3) has been studied by using semiempirical method. This method is the extension of the dielectric description theory proposed by Phillips, Van Vechten, levine and Tanaka (PVLT). In the calculation of bond valence, two schemes were adopted. The first is the equal-valence scheme, and the second is Bond Valence Sums (BVS) scheme. Both schemes suggest that for the title compound bond covalency be mainly influenced by bond valence, and insensitive to the Ca doping level. Generally speaking, larger bond valences usually result in higher bond covalencies.
Resumo:
The stability constants of M-L binary system and M-L-L' (M = La3+ similar to Yb3+, Y3+ and Ca2+; L= DL-malic aicd, L' = L-hydroxyproline) ternary system were determined by pH-(0)-tentiometric method under the simulating physiological condition(37 degrees C, I=0.15 mol/L NaCl). The complex species MpLqLr'H-s(abbr as pqrs) in the sytems were ascertained by program COMPLEX. The results show that there are three species(1101, 1100 and 1200) in M-L binary system and one species(1010) in M-L' binary system. In addition to the above four species, a new species, 1112 was found in the M-L-L' ternary system, which is the only species of mixed ligands. Rare earth ions form more stable complexes than calcium ion does and the stability differences between their complexes in the ternary system are less than that in the binary system. The distributions of all the species in La-L-L' ternary system vs pH are discussed.
Resumo:
The effect of lanthanum and calcium on the structure and function of human erythrocyte membranes was investigated by fluorescence polarization, spin- labeled electron spin resonance (ESR) and laser Raman spectroscopy. The results showed that low concentration of La3+ (0.5 mu mol/L) activated a Little (Na++K+)-ATPase and Mg2+-ATPase activities, and it inhibited obvi ously the ATPase activities with increasing its concentrations. La3+ lowered the lipid fluidity of human erythrocyte membranes and decreased the vibration intensity of alpha-helix of the protein in the Amide I '. The effect of Ca2+ on the lipid fluidity and alpha-helix of the protein in the Amide I ' was smaller than that of La3+.
Resumo:
An integrated CaF2 crystal optically transparent infrared (ir) thin-layer cell was designed and constructed without using any soluble adhesive materials. It is suitable for both aqueous and nonaqueous systems, and can be used not only in ir but also in uv-vis studies. Excellent electrochemical and spectroelectrochemical responses were obtained in evaluating this cell by cyclic voltammetry and steady-state potential step measurements for both ir and uv-vis spectrolectrochemistry with ferri/ferrocyanide in aqueous solution, and with ferrocene/ferrocenium in organic solvent as the testing species, respectively. The newly designed ir cell was applied to investigate the electrochemical reduction process of bilirubin in situ, which provided direct information for identifying the structure of the reduction product and proposing the reaction mechanism.
Resumo:
The partitioning of Y and Ho between CaCO3 (calcite and aragonite respectively) and seawater was experimentally investigated at 25 degrees C and I atm. Both Y and Ho were observed to be strongly partitioned into the overgrowths of calcite or aragonite. Their partition coefficients, D-Y and D-Ho, were determined to be similar to 520-1400 and similar to 700-1900 in calcite, similar to 1200-2400 and similar to 2400-4300 in aragonite, respectively. Y fractionates from Ho during the coprecipitation with either calcite or aragonite. Within our experimental conditions, the fractionation factor, k = D-Y/D-Ho, was determined to be similar to 0.62-0.77 in calcite and similar to 0.50-0.57 in aragonite, respectively. The aqueous complexation of Y and Ho, which is a function of solution chemistry, probably plays an important role in both the partitioning and the fractionation. Further analyses suggest that the difference in covalency between Y and Ho associated with changes in their coordination environments is the determinant factor to the Y-Ho fractionation in the H2CO3-CaCO3 System.
Resumo:
To elucidate the physicochemical properties of silk protein, we studied the effects of calcium chloride and ethanol on the gelation of fibroin. Fibroin was treated with 5.0 M calcium chloride in water (Ca/W) or 5.0 M calcium chloride in 20% (v/v) ethanol (Ca/Et) and the rheological properties of colloidal fibroin were investigated. The Ca/W-treatment promoted an increased rate of gelation and gave higher gel strength than the Ca/Et-treatment. The maximum gel strengths of Ca/W- and Ca/Et-treated fibroins were obtained at pH 7.0 and pH 5.5, respectively. Scanning electron micrographs showed that the Ca/W-treated fibroin gel had a more developed three-dimensional molecular network than the Ca/Et-treated gel. Further, FT-IR spectra suggested that Ca/W-treated fibroin has more of a beta-structure than Ca/Et-treated one in colloidal conditions. This study indicated that the use of calcium chloride alone was more beneficial to the gelation of fibroin than combined use with ethanol.