74 resultados para Barium zirconate
Resumo:
Rare earths are a series of minerals with special properties that make them essential for applications including miniaturized electronics, computer hard disks, display panels, missile guidance, pollution controlling catalysts, H-2-storage and other advanced materials. The use of thermal barrier coatings (TBCs) has the potential to extend the working temperature and the life of a gas turbine by providing a layer of thermal insulation between the metallic substrate and the hot gas. Yttria (Y2O3), as one of the most important rare earth oxides, has already been used in the typical TBC material YSZ (yttria stabilized zirconia). In the development of the TBC materials, especially in the latest ten years, rare earths have been found to be more and more important. All the new candidates of TBC materials contain a large quantity of rare earths, such as R2Zr2O7 (R=La, Ce, Nd, Gd), CeO2-YSZ, RMeAl11O19 (R=La, Nd; Me=Mg, Ca, Sr) and LaPO4. The concept of double-ceramic-layer coatings based on the rare earth materials and YSZ is effective for the improvement of the thermal shock life of TBCs at high temperature.
Resumo:
BaF2 nanocrystals doped with 5.0 mol% Eu3+ has been successfully synthesized via a facile, quick and efficient ultrasonic solution route employing the reactions between Ba(NO3)(2), Eu(NO3)(3) and KBF4 under ambient conditions. The product was characterized via X-ray powder diffraction (XRD), scanning electron micrographs (SEM), transmission electron microscopy (TEM), high-resolution transmission electron micrographs (HRTEM), selected area electron diffraction (SAED) and photoluminescence (PL) spectra. The ultrasonic irradiation has a strong effect on the morphology of the BaF2:Eu3+ particles. The caddice-sphere-like particles with an average diameter of 250 nm could be obtained with ultrasonic irradiation, whereas only olive-like particles were produced without ultrasonic irradiation. The results of XRD indicate that the obtained BaF2:Eu3+ nanospheres crystallized well with a cubic structure. The PL spectrum shows that the BaF2:Eu3+ nanospheres has the characteristic emission of Eu3+ D-5(0)-F-7(J) (J = 1-4) transitions, with the magnetic dipole D-5(0)-F-7(1) allowed transition (590 nm) being the most prominent emission line.
Resumo:
This paper summarizes the basic properties of ceramic materials for thermal barrier coatings. Ceramics, in contrast to metals, are often more resistant to oxidation, corrosion and wear, as well as being better thermal insulators. Except yttria stabilized zirconia, other materials such as lanthanum zirconate and rare earth oxides are also promising materials for thermal barrier coatings.
Resumo:
0-3 connectivity piezoelectric composites lead zirconate titanate(PZT)/polyvinylidene fluoride(PVDF) were prepared. Crystallininity and microstructure of the samples were characterized by SEM, FTIR and WAXD. The results indicated that the PZT powder was blended with non-crystalline phase of PVDF. The composites presented different net-morphology. PVDF existed as g crystalline phase in the composites. The composites presented island type structure with low content of PZT and hard sphere stack in irregular type with high content of PZT.
Resumo:
Erbium-doped BaF2 nanoparticles were prepared from the microemulsion of cetyl trimethyl ammonium bromide (CTAB), n-butanol, n-octane and water. The X-ray diffraction (XRD) patterns were indexed to a pure BaF2 cubic phase. Transmission electron microscopy (TEM) images showed that BaF2 products were monodispersed with 15-20 nm in size at the dopant concentration of 0.06 mol%. At higher dopant concentration, there was no significant increase in particle size, but more polydispersed. Photoluminescence (PL) properties of the final products were examined. We can observe fluorescence of Er3+ around 1540 nm and with the increase of dopant concentration, the fluorescent intensity increases.
Resumo:
BaF2 nanocubes were prepared from quaternary reverse micelles of cetyl trimethyl ammonium bromide (CTAB), n-butanol, n-octane, and water. Interestingly, there are arching sheet-like dendrites growing between two neighbouring sides of these cubes. X-ray powder diffraction (XRD) analysis showed that the products were BaF2 single phase. Scanning electron microscopy (SEM) or transition electron microscopy (TEM) was used to estimate the size of the final products. The results showed that the shape and size of particles were strongly dependent on the reaction conditions, such as the temperature and reaction time. When the reaction temperature was 25 degreesC, we obtained cuboid-like particles with 'clean' surfaces (no dendrites growing on them), and when the temperature was 35 degreesC, we obtained nanocubes with dendrites growing from them between the neighbouring sides. The influence of reaction time at a temperature of 35 degreesC is also discussed.
Resumo:
Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y2O3 + ZrO2) and lanthanum zirconate (LZ, La2Zr2O7) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 degrees C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 mu m have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 mu m, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 mu m, the failure mainly occurs at the interface of the YSZ layer and the bond coat.
Resumo:
The phase diagram of a cetyltrimethyl ammonium bromide( CTAB)/n-butanol/n-octane/KNO3-Mg( NO3)(2) system was drawn. Nanoparticles of Eu2+-doped KMgF3 were prepared from the quaternary microemulsions of cetyltrimethyl ammonium bromide(CTAB), n-butanol, n-octane and water. The X-ray diffraction(XRD) patterns were indexed to a pure KMgF3 cubic phase. The environmental scanning electron microscopic (ESEM) images show the presence of spherical Eu2+-doped KMgF3 nanoparticles with a diameter of ca. 20 nm. The emission of KMgF3: Eu2+ nanoparticles peaks at 360 mn. The excitation band was observed at 250 nm with a blue shift of ca. 70 nm compared with that of KMgF3: Eu2+ single crystal. The preparation method of nano-KMgF3: Eu2+/PMMA composite films was inquired into.
Resumo:
Barium hexaferrite was synthesized by chemical co-precipitation. Its Mossbauer spectra were obtained. A semi-empirical model, based on the Phillips theory of bonding, has been developed for quantitative explanation of the Mossbauer isomer shifts of Fe ions in BaFe12O19 crystals. The results show that, using the relationship between isomer shifts and covalency, the site assignments in hexaferrites will be resolved easily. This paper provides a powerful tool for studying other members of the hexagonal ferrimagnetic oxides family.
Resumo:
Major, minor and trace elemental contents in northeast China soybeans were determined by using inductively, coupled plasma atomic emission spectrometry (ICP-AES). Three different sample digestion methods including two wet digestions, HNO3-HClO4 and HNO3-H2SO4 and a dry ash method were compared. Owing to the high oil content in soybeans, long time is needed and access acid should be added, with mixed acid digestion methods, which may result in higher sample blank. Therefore, the dry ask method would be more proper for the pre-treatment of soybean samples. Potassium and phosphorus are major elements in soybeans, so the effect of potassium and phosphorus on the other elements was investigated. Results showed that the potassium and phosphorus did not affect the determination. of other trace elements. There are not significant differences in trace elemental contents for the eleven northeast China soybeans.
Resumo:
Dynamic mechanical properties of sulfonated butyl rubber ionomers neutralized with different amine or metallic ion (zinc or barium) and their blends with polypropylene (PP), high-density polyethylene (HDPE), or styrene-butadiene-styrene (SBS) triblock copolymer were studied using viscoelastometry. The results showed that glass transition temperatures of ion pair-containing matrix and ionic domains (T-g1 and T-g2, respectively) of amine-neutralized ionomers were lower than those of ionomers neutralized with metallic ions, and the temperature range of the rubbery plateau on the storage modulus plot for amine-neutralized ionomers was narrower. The modulus of the rubbery plateau for amine-neutralized ionomers was lower than that of ionomers neutralized with zinc or barium ion. With increasing size of the amine, the temperature range for the rubbery plateau decreased, and the height of the loss peak at higher temperature increased. Dynamic mechanical properties of blends of the zinc ionomer with PP or HDPE showed that, with decreasing ionomer content, the T-m of PP or HDPE increased and T-g1 decreased, whereas T-g2 or the upper loss peak temperature changed only slightly. The T-g1 for the blend with SBS also decreased with decreasing ionomer content. The decrease of T-g1 is attributed to the enhanced compatibilization of the matrix of the ionomer-containing ion pairs with amorphous regions of PP or HDPE or the continuous phase of SBS due to the formation of thermoplastic interpenetrating polymer networks by ionic domains and crystalline or glassy domains.
Resumo:
Barium titanate (BaTiO3) powders with particle sizes of 30 similar to 50 nm were prepared from barium stearate, titanium alkoxides and stearic acid by stearic acid-gel method. Dispersing the agglomerate of BaTiO3 nanoparticles into poly(amic acid) solution followed by curing led to the formation of polyimide hybrid films. The hybrid films were transparent and well distributed with BaTiO3 nanoparticles when the BaTiO3 content was less than 1 wt%. Highly loaded hybrid film containing 30 wit % BaTiO3 was tough, had a smooth surface and possessed much higher dielectric and piezoelectric constants than the parent polyimide.
Resumo:
In this paper, the reaction and structure of the complexes of alkaline earth metal (Ca, Sr, Ba) with 2-(4'-chloro-2'-phosphonazo)-7-(2', 6'-dibromo-4'-chlorophenylazo 1, 8-dihydroxy-3, 6-naphthalene disulfonic acid (Chlorophosphonazo-DBC) have been studied. This ligand has eight forms under different acidity. The protonation reactions take place at [H+] > 0.36 mol.dm-3. The ligand begins dissociations at pH > 0.5. Two protons are released in the complexes formation reactions(Me2+ + 2HI half-arrow-pointing-left and half-arrow-pointing-right MeL2 + 2H+). The stability constants of the complexes of Calcium, Strontium and Barium have been determined by Yoe-Jone method, Majumder-Chakrabartty method and calculation method. The order of the stability of complexes is as follows: Sr > Ba > Ca. The structure of the complexes have also been studied by infrared spectroscopy, Laser Raman spectroscopy, NMR, and EPR. The results show that these groups of N = N, PO3H2 and OH are active groups in the complex reactions. The structure of the complexes of Strontium, Barium and Calcium with chlorophosphonazo-DBC are represented and the reaction and the complex bonds are discussed in this paper.
Resumo:
A novel graphitic-nanofilament-(GNF-) supported Ru-Ba catalyst is prepared and used in ammonia synthesis reaction. The Ru-Ba/GNFs catalyst shows remarkably high activity and stability for ammonia synthesis, which can be attributed to high purity and graphitization of GNFs with unique structure. TEM micrographs of the Ru-Ba/GNFs catalysts show that Ru metal particles uniformly disperse on the outer wall of GNFs, and the particles become bigger than that before ammonia synthesis reaction after 50 h of operation at 500degreesC and 7.0 MPa, probably due to the Ru crystals covered by promoter and support materials and/or sintering of Ru crystals. (C) 2002 Elsevier Science (USA).