101 resultados para BROWN DWARF DESERT
Resumo:
Fucoidan fractions from the brown seaweed Chorda filum were studied using solvolytic desulfation.Methylation analysis and NMR spectroscopy were applied for native and desulfated polysaccharides.Homefucan sulfate from C.filum was shown to contain poly-a-(1-3)-fucopyranoside backbone with a high degree of branching,mainly of a-(1-2)-linked single units.Some fucopyranose residues are sulfated at O-4(mainly) and O-2 positions.Some a-(1-3)-linked fucose residues were shown by NMR to be 2-O-acetylated.The 1H and 13C NMR spectra of desulfated,deaceylated fucan were complerely assigned.THe spectral data obtained correspond to a quasiregular polysaccharide structure with a branched hexasaccharide repeating unit.Other fucoidan frations from C.filum have more complex carbohydrate composition and give rather complex methvlation patterns.
Resumo:
The ecological interaction of brown algae are important as these macroalgae are common and often keystone members in many benthic marine communities.This review highlights their chemical interactions,particularly with potential herbivores,but also with fouling oranganisms,with potential pathogens,with each other as gametes,and with their microenvironments when they are spores.Phlorotannins,which are phenolic compounds unique to brown algae,have been studied hesvily in many of these respects and sre highlightes here.This includes recent controversy about their roles as defences against herbivory,as well as new understanding of their roles in primary cellular functions that may,in many instances,be more important than ,and which at least have to be considered in convert with,any possible ecological functions.Brown algae have also been useful models for testing theoties about the evolution of and ecological constraints on chemical defence.Furthermore,their mocroscopic motile gametes and spores have the ability to react to their chemical environments behavirourally.
Resumo:
The biological soil crusts (BSCs) in the Gurbantunggut Desert, the largest fixed and semi-fixed desert in China, feature moss-dominated BSCs, which play an indispensable role in sand fixation. Syntrichia caninervis Mitt. (S. caninervis) serves as one of the most common species in BSCs in the desert. In this study we examined the morphological structure of S. caninervis from leafy gametophyte to protonema using light and scanning electron microscopy (SEM). We also examined the relationships between the morphological structure of S. caninervis and environmental factors. We found that: (1) this moss species is commonly tufted on the sand surface, and its leaves are folded upwards and twisted around the stem under dry conditions; (2) the cells on both upper and lower leaf surfaces have C-shaped dark papillae, which may reflect sunlight to reduce the damage from high temperature; (3) the leaf costa is excurrent, forming an awn with forked teeth; and (4) the protonema cells are small and thickset with thick cell walls and the cytoplasm is highly concentrated with a small vacuole. In addition, we also found that the protonema cells always form pouches on the tip of the mother cells during the process of cell polarization. Our results suggest that S. caninervis has, through its life cycle, several morphological and structural characteristics to adapt to dry environmental conditions. These morphological features of S. caninervis may also be found in other deserts in the world due to the world-wide distribution of the species.
Resumo:
Microcoleus vaginatus Gom., the dominant species in biological soil crusts (BSCs) in desert regions, plays a significant role in maintaining the BSC structure and function. The BSC quality is commonly assessed by the chlorophyll a content, thickness, and compressive strength. Here, we have studied the effect of different proportions of M. vaginatus, collected from the Gurbantunggut Desert in northwestern China, on the BSC structure and function under laboratory conditions. We found that when M. vaginatus was absent in the BSC, the BSC coverage, quantified by the percentage of BSC area to total land surface area, was low with a chlorophyll a content of 4.77 x 10(-2) mg g(-1) dry soil, a thickness of 0.86 mm, and a compressive strength of 12.21 Pa. By increasing the percentage of M. vaginatus in the BSC, the BSC coverage, chlorophyll a content, crust thickness, and compressive strength all significantly increased (P < 0.01). The maximum chlorophyll a content (13.12 mg g(-1)dry soil), the highest crust thickness, and the compressive strength (1.48 mm and 36.60 Pa, respectively) occurred when the percentage of inoculated M. vaginatus reached 80% with a complex network of filaments under scanning electron microscope. The BSC quality indicated by the above variables, however, declined when the BSC was composed of pure M. vaginatus (monoculture). In addition, we found that secretion of filaments and polymer, which stick sands together in the BSC, increased remarkably with the increase of the dominant species until the percentage of M. vaginatus reached 80%. Our results suggest that not only the dominant species but also the accompanying taxa are critical for maintaining the structure and functions of the BSC and thus the stability of the BSC ecosystems.
Resumo:
In this paper, marine brown algae Laminaria japonica was chemically modified by crosslinking with epichlorohydrin (EC1 and EC2), or oxidizing by potassium permanganate (PC), or crosslinking with glutaraldehyde (GA), or only washed by distilled water (DW). They were used for equilibrium sorption uptake studies with Cd2+, Cu2+, Ni2+ and Zn2+.
Resumo:
In this paper, marine brown algae Laminaria japonica was chemically modified by crosslinking with epichlorohydrin (EC1 and EC2), or oxidizing by potassium permanganate (PC), or crosslinking with glutaraldehyde (GA), or only washed by distilled water (DW). They were used for equilibrium sorption uptake studies with Cd2+, Cu2+, Ni2+ and Zn2+. The experimental data have been analyzed using Langmuir, Freundlich and Redlich-Peterson isotherms. The results showed that the biosorption equilibrium was well described by both the Langmuir and Redlich-Peterson isotherms.
Resumo:
Two new brominated selinane sesquiterpenes, 1-bromoselin-4(14), 11-diene (1) and 9-bromoselin-4(14), 11-diene (2), one known cadinane sesquiterpene, cadalene (3), and four known selinane sesquiterpenes, alpha-selinene (4), beta-selinene (5), beta-dictyopterol (6), and cyperusol C (7), were isolated from a sample of marine brown alga Dictyopteris divaricata collected off the coast of Yantai (China). Their structures were established by detailed MS and NMR spectroscopic analysis, as well as comparison with literature data.
Resumo:
Mariculture of the brown alga Hizikia fusiformis (Harvey) Okamura as an export-oriented human food has been there more for than 20 years in China. It is now one of the five major farmed algal species along the Chinese coast. Stable and sufficient supply of young seedlings for scaling up the cultivation has been a problem throughout the farming history of this species due to the unique dioecious life cycle and relatively short time window of sexual reproduction in nature. These two factors led to a practical difficulty in obtaining zygotes at identical developmental stage in viable amounts for seedling production. A key solution to this problem is to control the synchronization of the receptacle development and to realize the simultaneous discharge of male and female gametes, such that the fertilization rate could be greatly enhanced. Focusing on one of the farmed populations in this report, we present our results on mass production of seedlings using the synchronization technique on a large scale performed in 2007. Totally 5.5 hundred million embryos were obtained from 100 kg female sporophytes. The seedlings were raised up to 3.5 mm in length in greenhouse tanks over a month and were further grown in open sea for over 3 months at two experimental sites. The success of mass production of seedlings in this alga helped to lay the basis for future trials in other species in the genus of Sargassum that have identical life cycle.
Resumo:
The haploid stage of gametophytes of the subtidal brown alga Undaria pinnatifida can be vegetatively propagated under favorable conditions. This unique characteristic makes it possible to establish independent gametophyte cell lines that are zoospore-derived. Sporophytic offspring can be generated through hybridizing the male and female gametophytes, which are derived from different cell lines. Accumulated experiences in this and other species in Laminariales demonstrated the applicability of this novel way to breed desired strains for open-sea cultivation. Sporophytic offspring originated from mono-crossing of male and female gametophyte clones were shown to have similar morphological characteristics under identical ambient conditions. However, there has been no report to relate this similarity on molecular levels. In this report, amplified fragment length polymorphism (AFLP) and microsatellite markers were used to analyze the genetic identity of sporophytic offspring of U. pinnatifida originated from two mono-crossing lines (M1 and M2), two self-breeding lines (S1 and S2) and one wild population (W). Totally 318 AFLP loci were revealed by use of 11 primer sets, of which 4.7%, 0.3%, 17.9%, 16.4% and 36.5% were polymorphic in M1, M2, S1, S2 and W, respectively. The pairwise genetic identity among the individuals of the same line was assessed. It was shown that offspring from mono-crossing lines had a higher degree of identity (95.6-100%) than self-breeding lines (87.7-98.4%) and the wild population (81.5-92.1%). Analysis by use of six microsatellite loci also revealed a higher genetic identity among individuals of the mono-crossing line, further confirming the results of AFLP analysis. Results from this investigation support, on molecular levels, the novel way to produce and maintain strains in U. pinnatifida by use of different gametophyte cell lines.