144 resultados para BRIDGING LIGANDS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copolymerizations of ethylene with 5-vinyl-2-norbornene or 5-ethylidene-2-norbornene under the action of various titanium complexes bearing bis(beta-enaminoketonato) chelate ligands of the type, [(RN)-N-1=C(R-2)CH=C(R-3)O](2)TiCl2 (1, R-1=Ph, R-2=CF3, R-3=Ph; 2, R-1=C6H4F-p, R-2=CF3, R-3=Ph; 3, R-1=Ph, R-2=CF3, R-3=t-Bu; 4, R-1=C6H4F-p, R-2=CF3, R-3=t-Bu; 5, R-1=Ph, R-2=CH3, R-3=CF3; 6, R-1=C6H4F-p, R-2=CH3 R-3=CF3), have been shown to occur with the regioselective insertion of the endocyclic double bond of the monomer into the copolymer chain, leaving the exocyclic vinyl double bond as a pendant unsaturation. The ligand modification strongly affects the copolymerization behaviour. High catalytic activities and efficient co-monomer incorporation can be easily obtained by optimizing the catalyst structures and polymerization conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vanadium(III) complexes bearing tridentate salicylaldiminato ligands (2a-f) [OC6H4CH=NL]VCl2(THF) (L = CH2CH2OMe, 2a; CH2CH2NMe2, 2b; CH2C5H4N, 2c; 8-C9H6N (quinoline), 2d; 2-MeSC6H4, 2e; 2-Ph2PC6H4, 2f) and tridentate beta-enaminoketonato ligands [OC6H8CH=N-2-Ph2PC6H4]VCl2(THF) (2g) and [O(Ph)C=CHCH=N-2-Ph2PC6H4]VCl2(THF) (2h) were prepared from VCl3(THF)(3) by treating with 1.0 equiv of the deprotonated ligands in tetrahydrofuran (THF). These complexes were characterized by FTIR and mass spectrometry as well as elemental analysis. Structures of complexes 2e, 2f, and 2h were further confirmed by X-ray crystallographic analysis. These complexes were investigated as catalysts for olefin polymerization in the presence of organoaluminum compounds. On activation with Et2AlCl, complexes 2a-h exhibited high catalytic activities toward ethylene polymerization (up to 20.64 kg PE/mmol(v) center dot h center dot bar) even at high temperature, suggesting these catalysts possess high thermal stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel neutral nickel complexes 4a-e bearing modified beta-ketoiminato ligands [(2,6-(Pr2C6H3)-Pr-i)N=C(R-1)CHC(2 '-R2C6H4)O]Ni(Ph)(PPh3) (4a, R-1 R-2 = H; 4b, R-1 = H, R-2 = Ph; 4c, R-1 = H, R-2 = Naphth; 4d, R-1 = CH3, R-2 = Ph; 4e, R-1 = CF3, R-2 Ph) have been synthesized and characterized. Molecular structures of 4b and 4e were further confirmed by X-ray crystallographic analysis. Activated with B(C6F5)(3), all the complexes are active for the polymerization of ethylene to branched polyethylenes. Ligand structure, i.e., substituents R-1 and R-2, greatly influences not only catalytic activity but also the molecular weight and branch content of the polyethylene produced. The phenyl-substituted complex 4b exhibits the highest activity of lip to 145 kg PE/mol(Ni)center dot h center dot atm under optimized conditions, which is about 10 times more than unsubstituted complex 4a (14.0 kg PE/mol(Ni center dot)h center dot atm). Highly branched polyethylene with 103 branches per 1000 carbon atoms has been prepared using catalyst 4e.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of amino-pyrrolide ligands (1-4a) and their derivatives aminothiophene ligand (5a), amino-indole ligand (6a) were prepared. Chromium catalysts, which were generated in situ by mixing the ligands with CrCl3(thf)(3) in toluene, were tested for ethylene polymerization. The preliminary screening results revealed that the tridentate amino-pyrrolide ligands containing soft pendant donor, 3a, 4a/CrCl3(thf)(3) systems displayed high catalytic activities towards ethylene polymerization in the presence of modified methyaluminoxane. The electronic and steric factors attached to the ligand backbone significantly affected both the catalyst activity and the polymer molecular weight. Complex 4b was obtained by the reaction of CrCl3(thf)(3) with one equivalent of the lithium salts of 4a, which was the most efficient ligand among the tested ones. The effect of polymerization parameters such as cocatalyst concentration, ethylene pressure, reaction temperature, and time on polymerization behavior were investigated in detail. The resulting polymer obtained by 4b display wax-like and possess linear structure, low molecular weight, and unimodal distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel vanadium(III) complexes hearing heteroatoill-containing group-substituted salicylaldiminato ligands [RN=CH(ArO)]VCl2(THF)(2) (Ar = C6H4, R = C3H2NS, 2a; C7H4NS, 2c; C7H5N2, 2d; Ar = C(6)H(2)tBu(2) (2,4), R = C3H2NS, 2b) have been synthesized and characterized. Structure of complex 2c was further confirmed by X-ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a-d exhibited high catalytic activities (up to 22.8 kg polyethylene/mmolv h bar), and affording polymer with unimodal molecular weight distributions at 25-70 degrees C in the first 5-min polymerization, whereas produced bimodal molecular weight distribution polymers at 70 degrees C when polymerization time prolonged to 30 min. The catalyst structure plays an important role in controlling the molecular weight and molecular weight distribution of the resultant polymers produced in 30 min polymerization. In addition, ethylene/hexene copolymerizations with catalysts 2a-d were also explored in the presence of Et2AlCl, which leads to the high molecular weight and unimodal distributions copolymers with high comonomer incorporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The copolymerizations of ethylene with polar hydroxyl monomers such as 10-undecen-1-ol, 5-hexen-1-ol and 3-buten-1-ol were investigated by the vanadium(III) catalysts bearing bidentate [N,O] ligands (1, [PhN=C(CH3)CHC(Ph)O]VCl2(THF)(2): 2, [PhN=CHC6H4O]VCl2(THF)(2); 3, [PhN=CHC(Ph)CHO]VCl2(THF)(2)). The polar monomers were pretreated by alkylaluminum before the polymerization. High catalytic activities and efficient comonomer incorporations can be easily obtained by changing monomer masking reagents and polymerization conditions in the presence of diethylaluminium chloride as a cocatalyst. The longer the spacer group, the higher the incorporation of the monomer. Under the mild conditions, the incorporation level of 10-undecen-1-ol reached 13.9 mol% in the resultant copolymers was obtained. The reactivity ratios of copolymerization (r(1) = 41.4, r(2) = 0.02, r(1)r(2) = 0.83) were evaluated by Fineman-Ross method. According to C-13 NMR spectra, polar units were located both on the main chain and at the chain end.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of novel vanadium(III) complexes bearing iminopyrrolide chelating ligands [2-(RN=CH)C4H3N]V(THF)(2)Cl-2 (2a: R = cyclohexyl; 2b: R = Ph; 2c: R = 2,6-iPr(2)C(6)H(3); 2d: R = p-CF3C6H4; 2e: R = C6F5) have been synthesized and characterized. Single-crystal X-ray diffraction revealed that complexes 2a, 2c and 2e adopt an octahedral geometry around the vanadium center. In the presence of Et2AlCl as a co-catalyst, these complexes displayed high catalytic activities up to 48.6 kg PE mmol(V)(-1) h(-1) bar(-1) for ethylene polymerization, and produced high molecular weight polymers. 2a-e/Et2AlCl catalytic systems were tolerant to elevated temperature (70 degrees C) and yielded unimodal polyethylenes, indicating the single site behaviour of these catalysts. By pre-treating with equimolar amounts of alkylaluminums, functional alpha-olefin 10-undecen-1-ol can be efficiently incorporated into polyethylene chains. 10-Undecen-1-ol incorporation can easily reach 15.8 mol% under the mild conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of new titanium complexes bearing two regioisomeric trifluoromethyl-containing enaminoketonato ligands (3a-h and 6a-h), [PhN=CRCHC(CF3)O](2)TiCl2 (3a, R = Me; 3b, R = n-C5H11; 3c, R = i-Pr; 3d, R = Cy; 3e, R = t-Bu; 3f, R = CH=CHPh; 3g, R = Et; 3h, R = n-C11H23) and [PhN=C(CF3)CHC(R)O](2)TiCl2 (6a, R = Ph; 6b, R = n-C5H11; 6c, R = i-Pr; 6d, R = Cy; 6e, R = t-Bu; 6f, R = CH=CHPh; 6g, R = CHPh2; 6h, R = CF3) have been synthesized and characterized. X-ray crystal structures analyses suggest that complexes 3c-e and 6c-d all adopt a distorted octahedral geometry around the titanium center. Complexes 3c, 3d and 6c display a cis-configuration of the two chlorine atoms around the titanium center, while complex 6d shows a trans-configuration of the two chlorine atoms. Especially, the configurational isomers (cis and trans) of complex 3e were identified both in solution and in the solid state by NMR and X-ray analyses. With modified methylaluminoxane as a cocatalyst, all the complexes are active towards ethylene polymerization, and produce high molecular weight polymers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the electrostatic attraction Keggin-type polyoxometalate H4SiW12O40 (SiW12) and small molecule 4-aminobenzo-15-crown-5 ether (4-AB15C5) were alternately deposited on poly (allylamine hydrochloride) (PAH)-derived indium tin oxide (ITO) substrate through a layer-by-layer (LBL) self-assembly, forming a supramolecular multilayer film (film-A). SiW12 was also deposited on a glassy carbon electrode (GCE) derived by 4-AB15C5 via covalent bonding in 0.1 M NaCl aqueous solution and formed a composite monolayer film (film-B). UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy measurements demonstrated that the interactions between SiW12 and 4-AB15C5 in both two film electrodes were the same and caused by the bridging action of oxonium ions. But, the nanostructure in the two film electrodes was different. 4-AB15C5 in film-A was oriented horizontally to ITO substrate, however, that in film-B was oriented vertically to GCE. Namely film-A corresponded to a layer structure, and film-B corresponded to an intercalation structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Novel blue-emitting phosphorescent iridium(III) complexes with fluorinated 1,3,4-oxadiazole derivatives as cyclometalated ligands and dithiolates as ancillary ligands have been synthesized and fully characterized; highly efficient OLEDs have been achieved using these complexes in the light-blue to blueemitting region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkane elimination reactions of amino-amino-bis(phenols) H2L1-4, Salan H2L5, and methoxy-beta-diimines HL6,7 with lanthanide tris(alkyl) s, Ln(CH2SiMe3)(3)(THF)(2) (Ln = Y, Lu), respectively, afforded a series of lanthanide alkyl complexes 1-8 with the release of tetramethylsilane. Complexes 1-6 are THF-solvated mono( alkyl) s stabilized by O, N, N, O-tetradentate ligands. Complexes 1-3 and 5 adopt twisted octahedral geometry, whereas 4 contains a tetragonal bipyramidal core. Bearing a monoanionic moiety L-6 (L-7), complex 7 ( 8) is a THF-free bis(alkyl). In complex 7, the O, N, N-tridentate ligand combined with two alkyl species forms a tetrahedral coordination core. Complexes 1, 2, and 3 displayed modest activity but high stereoselectivity for the polymerization of rac-lactide to give heterotactic polylactide with the racemic enchainment of monomer units P-r ranging from 0.95 to 0.99, the highest value reached to date. Complex 5 exhibited almost the same level of activity albeit with relatively low selectivity. In contrast, dramatic decreases in activity and stereoselectivity were found for complex 4. The Salan yttrium alkyl complex 6 was active but nonselective. Bis(alkyl) complexes 7 and 8 were more active than 1-3 toward polymerization of rac-LA, however, to afford atactic polylactides due to di-active sites. The ligand framework, especially the "bridge" between the two nitrogen atoms, played a significant role in governing the selectivity of the corresponding complexes via changing the geometry of the metal center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkane elimination reactions of rare earth metal tris(alkyl)s, Ln(CH2SiMe3)3(THF)2 (Ln = Y, Lu) with the multidentate ligands HL1-4, afforded a series of new rare earth metal complexes. Yttrium, complex I supported by flexible amino-intino phenoxide ligand HL1 was isolated as homoleptic product. In the reaction of rigid phosphino-imino phenoxide ligand HL 2 with equintolar Ln(CH2SiMe3)3(THF)2, HL 2 was deprotonated by the metal alkyl and its imino C=N group was reduced to C-N by intramolecular alkylation, generating THF-solvated mono-alkyl complexes (2a: Ln = Y; 2b: Ln = Lu). The di-ligand chelated yttriurn complex 3 without alkyl moiety was isolated when the molar ratio of HL 2 to Y(CH,SiMe3)3(THF)2 increased to 2: 1. Reaction of steric phosphino beta-ketoiminato ligand HL 3 with equimolar Ln(CH2SiMe3)3(THF)2 afforded di-ligated mono-alkyl complexes (4a: Ln = Y; 4b: Ln = Lu) without occurrence of intramolecular alkylation or formation of homoleptic product. Treatment of tetradentate methoxy-amino phenol HL 4 with Y(CH2SiMe3)3(THF)2 afforded a monomeric yttrium bis-alkyl complex of THF-free. The resultant complexes were characterized by IR, NMR spectrum and X-ray diffraction analyses.All alkyl complexes exhibited high activity toward the ring-opening polymerization Of L-lactide to give isotactic polylactide with controllable molecular weight and narrow to moderate polydispersity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The N,N- bidentate ligands 2- {( N- 2,6- R) iminomethyl)} pyrrole ( HL1, R) dimethylphenyl; HL2, R) diisopropylphenyl) have been prepared. HL1 reacted readily with 1 equiv of lanthanide tris( alkyl)s, Ln(CH2SiMe3)(3)(THF)(2), affording lanthanide bis(alkyl) complexes L(1)Ln(CH2SiMe3)(2)(THF)(n) (1a, Ln= Lu, n = 2; 1b, Ln = Sc, n = 1) via alkane elimination. Reaction of the bulky ligand HL2 with 1 equiv of Ln(CH2SiMe3)(3)( THF)(2) gave the bis(pyrrolylaldiminato) lanthanide mono(alkyl) complexes L(2)(2)Ln- (CH2SiMe3)(THF) (2a, Ln) Lu; 2b, Ln = Sc), selectively. The N,N- bidentate ligand HL3, 2- dimethylaminomethylpyrrole, reacted with Ln( CH2SiMe3) 3( THF) 2, generating bimetallic bis( alkyl) complexes of central symmetry ( 3a, Ln = Y; 3b, Ln = Lu; 3c, Ln = Sc). Treatment of the N,N,N,N- tetradentate ligand H2L4, 2,2'-bis(2,2-dimethylpropyldiimino) methylpyrrole, with equimolar Lu(CH2SiMe3)(3)(THF)(2) afforded a C-2- symmetric binuclear complex ( 4). Complexes 3a, 3b, 3c, and 4 represent rare examples of THF- free binuclear lanthanide bis( alkyl) complexes supported by non- cyclopentadienyl ligands. All complexes have been tested as initiators for the polymerization of isoprene in the presence of AlEt3 and [ Ph3C][B(C6F5)(4)]. Complexes 1a, 1b, and 3a show activity, and 1b is the most active initiator, whereas 2a, 2b, 3b, 3c, and 4 are inert.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anilido phosphinimino ancillary ligand H2L1 reacted with one equivalent of rare earth metal trialkyl [Ln{CH2Si(CH3)(3)}(3)(thf)(2)] (Ln = Y, Lu) to afford rare earth metal monoalkyl complexes [L(1)LnCH(2)Si(CH3)(3)(THF)] (1a: Ln = Y; 1b: Ln = Lu). In this process, deprotonation of H2L1 by one metal alkyl species was followed by intramolecular C-H activation of the phenyl group of the phosphine moiety to generate dianionic species L-1 with release of two equivalnts of tetramethylsilane. Ligand L-1 coordinates to Ln(3+) ions in a rare C,N,N tridentate mode. Complex 1a reacted readily with two equivalents of 2,6-diisopropylaniline to give the corresponding bis-amido complex [(HL1)LnY(NHC(6)H(3)iPr(2)-2,6)(2)] (2) selectively, that is, the C-H activation of the phenyl group is reversible. When 1a was exposed to moisture, the hydrolyzed dimeric complex [{(HL1)Y(OH)}(2)](OH)(2) (3) was isolated. Treatment of [Ln{CH2Si(CH3)(3)}(3)-(thf)(2)] with amino phosphine ligands HL2-R gave stable rare earth metal bisalkyl complexes [(L2-R)Ln{CH2Si(CH3)(3)}(2)(thf)] (4a: Ln=Y, R=Me; 4b: Ln=Lu, R=Me; 4c: Ln=Y, R=iPr; 4d: Ln=Y, R=iPr) in high yields. No proton abstraction from the ligand was observed. Amination of 4a and 4c with 2,6-diisopropylaniline afforded the bis-amido counterparts [(L2-R)Y(NHC(6)H(3)iPr(2)-2,6)(2)(thf)] (5a: R=Me; 5b: R=iPr).