65 resultados para BOROHYDRIDE ELECTROOXIDATION
Resumo:
A vitamin B-12 chemically modified electrode (CME) was constructed by adsorption of vitamin B-12 onto a glassy carbon surface. The electrode catalyzes the electrooxidation of hydrazine compounds over a wide pH range. The electrocatalytic behavior of hydrazines is elucidated with respect to the CME preparation conditions, solution pH, operating potential, mobile phase flow rate, and other variables. When applied to liquid chromatographic detection of the analytes, the vitamin B-12 CME yielded a linear response range over 2 orders of magnitude, and detection limits at the picomole level. The vitamin B-12 CME offers acceptable catalytic stability in both batch and flow systems.
Resumo:
Chemically modified electrodes prepared by treating the cobalt tetraphenylporphyrin modified glassy-carbon electrode at 750-degrees (HCME) are shown to catalyze the electrooxidation of hydrazine. The oxidation occurred at +0.63 V vs. Ag/AgCl (saturated potassium chloride) in pH 2.5 media. The catalytic response is evaluated with respect to solution pH, potential scan-rate, concentration dependence and flow-rate. The catalytic stability of the HCME is compared with that of the cobalt tetraphenylporphyrin adsorbed glassy-carbon electrode. The stability of the HCME was excellent in acidic solution and even in solutions containing organic solvent (50% CH3OH). When used as the sensing electrode in amperometric detection in flow-injection analysis, the HCME permitted sensitive detection of hydrazine at 0.5 V. The limit of detection was 0.1 ng. The linear range was from 50 ng to 2.4-mu-g. The method is very sensitive and selective.
Resumo:
The electrocatalytic oxidation of hydrazine (N2H4) on a glassy carbon electrode (GC) modified by monolayer and polymer films of cobalt protoporphyrin dimethyl ester (CoPP) has been studied. Both the monolayer and polymer films of CoPP are very active to the anodic oxidation of N2H4. The activity of CoPP for the anodic oxidation of N2H4 is dependent on the pH of the solution, and the thickness of polymerized CoPP film. The oxidation kinetics were examined by methods of cyclic voltammetry, rotating disc electrodes and steady-state polarization measurement.
Resumo:
Cobalt boride precursors were synthesized via chemical reaction of aqueous sodium borohydride with cobalt chloride, and followed by heat-treating at various temperatures. The as-prepared Co-B catalysts were characterized and analyzed by X-ray diffraction (XRD), nitrogen adsorption-desorption and catalytic activity test; and were adopted to help accelerating hydrolysis reaction of NaBH4 alkaline solution. The Co-B catalyst treated at 500 degrees C exhibits the best catalytic activity, and achieves an average H, generation rate of 2970 ml/min/g, which may give a successive H, supply for a 481 W proton exchange membrane fuel cell (PEMFC) at 100% H-2 utilization. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Size-controllable tin oxide nanoparticles are prepared by heating ethylene glycol solutions containing SnCl2 at atmospheric pressure. The particles were characterized by means of transmission electron microscopic (TEM), X-ray diffraction (XRD) studies. TEM micrographs show that the obtained material are spherical nanoparticles, the size and size distribution of which depends on the initial experimental conditions of pH value, reaction time, water concentration, and tin precursor concentration. The XRD pattern result shows that the obtained powder is SnO2 with tetragonal crystalline structure. On the basis of UV/vis and FTIR characterization, the formation mechanism of SnO2 nanoparticles is deduced. Moreover, the SnO2 nanoparticles were employed to synthesize carbon-supported PtSnO2 catalyst, and it exhibits surprisingly high promoting catalytic activity for ethanol electrooxidation.