377 resultados para BLOCK-COPOLYMER LITHOGRAPHY
Resumo:
Biodegradable, amphiphilic, four-armed poly(epsilon-caprolactone)-block-poly(ethylene oxide) (PCL-b-PEO) copolymers were synthesized by ring-opening polymerization of ethylene oxide in the presence of four-armed poly(epsilon-caprolactone) (PCL) with terminal OH groups with diethylzinc (ZnEt2) as a catalyst. The chemical structure of PCL-b-PEO copolymer was confirmed by H-1 NMR and C-13 NMR. The hydroxyl end groups of the four-armed PC L were successfully substituted by PEO blocks in the copolymer. The monomodal profile of molecular weight distribution by gel permeation chromatography provided further evidence for the four-armed architecture of the copolymer. Physicochemical properties of the four-armed block copolymers differed from their starting four-armed PCL precursor. The melting points were between those of PCL precursor and linear poly(ethylene glycol). The length of the outer PEO blocks exhibited an obvious effect on the crystallizability of the block copolymer. The degree of swelling of the four-armed block copolymer increased with PEO length and PEO content.
Resumo:
A novel, hyperbranched, amphiphilic multiarm biodegradable polyethylenimine-poly(gamma-benZyl-L-gluta- mate) (PEI-PBLG) copolymer was prepared by the ring-opening polymerization of gamma-benzyl-L-glutamate-N-car-boxyanhydride (BLG-NCA) with hyperbranched PEI as a macroinitiator. The copolymer could self-assemble into core-shell micelles in aqueous solution with highly hydrophobic micelle cores. As the PBLG content was increased, the size of the micelles increased and the critical micelle concentration (CMC) decreased. The surface of the micelles had a positive potential. The cationic micelles were capable of complexing with plasmid DNA (pDNA), which could be released subsequently by treatment with polyanions. The PEI-PBLG copolymer formed unimolecular micelles in chloroform solution. ne pH-sensitive phase-transfer behavior exhibited two critical pH points for triggering the encapsulation and release of guest molecules. Both the encapsulation and release processes were rapid and reversible. Under strong acidic or alkaline conditions, the release process became partially or completely irreversible.
Resumo:
By using a combinatorial screening method based on the self-consistent field theory, we investigate the equilibrium morphologies of linear ABCBA and H-shaped (AB)(2)C(BA)(2) block copolymers in two dimensions. The triangle phase diagrams of both block copolymers are constructed by systematically varying the volume fractions of blocks A, B, and C. In this study, the interaction energies between species A, B, and C are set to be equal. Four different equilibrium morphologies are identified, i.e., the lamellar phase (LAM), the hexagonal lattice phase (HEX), the core-shell hexagonal lattice phase (CSH), and the two interpenetrating tetragonal lattice phase (TET2). For the linear ABCBA block copolymer, the reflection symmetry is observed in the phase diagram except for some special grid points, and most of grid points are occupied by LAM morphology. However, for the H-shaped (AB)(2)C(BA)(2) block copolymer, most of the grid points in the triangle phase diagram are occupied by CSH morphology, which is ascribed to the different chain architectures of the two block copolymers. These results may help in the design of block copolymers with different microstructures.
Resumo:
By using a combinatorial screening method based on the self-consistent field theory (SCFT) for polymers, we have investigated the morphology of H-shaped ABC block copolymers (A(2)BC(2)) and compared them with those of the linear ABC block copolymers. By changing the ratios of the volume fractions of two A arms and two C arms, one can obtain block copolymers with different architectures ranging from linear block copolymer to H-shaped block copolymer. By systematically varying the volume fractions of block A, B, and C, the triangle phase diagrams of the H-shaped ABC block copolymer with equal interactions among the three species are constructed. In this study, we find four different morphologies ( lamellar phase ( LAM), hexagonal lattice phase ( HEX), core-shell hexagonal lattice phase (CSH), and two interpenetrating tetragonal lattice (TET2)). Furthermore, the order-order transitions driven by architectural change are discussed.
Resumo:
The effect of crystallization on the lamellar orientation of poly( styrene)-b-poly(L-lactide) (PS-PLLA) semicrystalline diblock copolymer in thin films has been investigated by atomic force microscopy (AFM), transmission electronic microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). In the melt state, microphase separation leads to a symmetric wetting structure with PLLA blocks located at both polymer/substrate and polymer/air interfaces. The lamellar period is equal to the long period L in bulk determined by small-angle X-ray scattering (SAXS). Symmetric wetting structure formed in the melt state provides a model structure to study the crystallization of PLLA monolayer tethered on glassy (T-c < T-g,T-PS) or rubber (T-c > T-g,T-PS) PS substrate. In both cases, it is found that the crystallization of PLLA results in a "sandwich" structure with amorphous PS layer located at both folding surfaces. For T-c <= T-g,T- PS, the crystallization induces a transition of the lamellar orientation from parallel to perpendicular to substrate in between and front of the crystals. In addition, the depletion of materials around the crystals leads to the formation of holes of 1/2 L, leaving the adsorbed monolayer exposure at the bottom of the holes.
Resumo:
A novel biodegradable amphiphilic block copolymer PLGG-PEG-PLGG bearing pendant glucose residues is successfully prepared by the coupling reaction of 3-(2-aminoethylthio) propyl-R-D-glucopyranoside with the pendant carboxyl groups of PLGG-PEG-PLGG in the presence of N,N'-carbonyldiimidazole. The polymer PLGG-PEG-PLGG, i.e., poly {(lactic acid)-co-[(glycolic acid)-alt-(L-glutamic acid)]}-block-poly(ethylene glycol)-block-poly{( lactic acid)-co-[( glycolic acid)-alt-(L-glutamic acid)]}, is prepared by ring-opening copolymerization of L-lactide (LLA) with (3s)-benzoxylcarbonylethylmorpholine-2,5-dione (BEMD) in the presence of dihydroxyl PEG with molecular weight of 2000 as macroinitiator and Sn(Oct)(2) as catalyst, and then by catalytic hydrogenation. The glucose-grafted copolymer shows a lower degree of cytotoxicity to ECV-304 cells and improved specific recognition and binding with Concanavalin A (Con A). Therefore, this kind of glucose-grafted copolymer may find biomedical applications.
Resumo:
Advances in tissue engineering require biofunctional scaffolds that can provide not only physical support for cells but also chemical and biological cues needed in forming functional tissues. To achieve this goal, a novel RGD peptide grafted poly(ethylene glycol)-b-poly(L-lactide)-b-poly(L-glutamic acid) (PEG-PLA-PGL/RGD) was synthesized in four steps (1) to prepare diblock copolymer PEG-PLA-OH and to convert its -OH end group into -NH2 (to obtain PEG-PLA-NH2), (2) to prepare triblock copolymer PEG-PLA-PBGL by ring-opening polymerization of NCA (N-carboxyanhydride) derived from benzyl glutamate with diblock copolymer PEG-PLA-NH2 as macroinitiator, (3) to remove the protective benzyl groups by catalytic hydrogenation of PEGPLA-PBGL to obtain PEG-PLA-PGL, and (4) to react RGD (arginine-glycine-(aspartic amide)) with the carboxyl groups of the PEG-PLA-PGL. The structures of PEG-PLA-PGL/RGD and its precursors were confirmed by H-1 NMR, FT-IR, amino acid analysis, and XPS analysis. Addition of 5 wt % PEG-PLA-PGL/RGD into a PLGA matrix significantly improved the surface wettability of the blend films and the adhesion and proliferation behavior of human chondrocytes and 3T3 cells on the blend films. Therefore, the novel RGD-grafted triblock copolymer is expected to find application in cell or tissue engineering.
Resumo:
We have systematically studied the thin film morphologies of symmetric poly(styrene)-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer after annealing to solvents with varying selectivity. Upon neutral solvent vapor annealing, terraced morphology is observed without any lateral structures on the surfaces. When using PS-selective solvent annealing, the film exhibits macroscopically flat with a disordered micellar structure. While PMMA-selective solvent annealing leads to the dewetting of the film with fractal-like holes, with highly ordered nanoscale depressions in the region of undewetted films. In addition, when decreasing the swelling degree of the film in the case of PMMA-selective solvent annealing, hills and valleys are observed with the coexistence of highly ordered nanoscale spheres and stripes on the surface, in contrast to the case of higher swelling degree. The differences are explained qualitatively on the basis of polymer-solvent interaction parameters of the different components.
Ring-opening polymerization and block copolymerization of L-lactide with divalent samarocene complex
Resumo:
Divalent samarocene complex [(C5H9C5H4)(2)Sm(tetrahydrofuran)(2)] was prepared and characterized and used to catalyze the ring-opening polymerization of L-lactide (L-LA) and copolymerization of L-LA with caprolactone (CL). Several factors affecting monomer conversion and molecular weight of polymer, such as polymerization time, temperature, monomer/catalyst ratio, and solvent, were examined. The results indicated that polymerization was rapid, with monomer conversions reaching 100% within 1 h, and the conformation of L-LA was retained. The structure of the block copolymer of CL/L-LA was characterized by NMR and differential scanning calorimetry. The morphological changes during crystallization of poly(caprolactone) (PCL)-b-P(L-LA) copolymer were monitored with real-time hot-stage atomic force microscopy (AFM). The effect of temperature on the morphological change and crystallization behavior of PCL-b-P(L-LA) copolymer was demonstrated through AFM observation.
Resumo:
The dynamic mean-field density functional method, driven from the generalized time-dependent Ginzburg-Landau equation, was applied to the mesoscopic dynamics of the multi-arms star block copolymer melts in two-dimensional lattice model. The implicit Gaussian density functional expression of a multi-arms star block copolymer chain for the intrinsic chemical potentials was constructed for the first time. Extension of this calculation strategy to more complex systems, such as hyperbranched copolymer or dendrimer, should be straightforward. The original application of this method to 3-arms block copolymer melts in our present works led to some novel ordered microphase patterns, such as hexagonal (HEX) honeycomb lattice, core-shell HEX lattice, knitting pattern, etc. The observed core-shell HEX lattice ordered structure is qualitatively in agreement with the experiment of Thomas [Macromolecules 31, 5272 (1998)].
Resumo:
We report observation of inverted phases consisting of spheres and/or cylinders of the majority fraction block in a poly(styrene-b-butadiene-b-styrene) (SBS) triblock copolymer by solvent-induced order-disorder phase transition (ODT). The SBS sample has a molecular weight of 140K Da and a polystyrene (PS) weight fraction of 30%. Tapping mode atomic force microscopy (AFM) and transmission electron microscopy (TEM) were utilized to study the copolymer microstructure of a set of solution-cast SBS films dried with different solvent evaporation rates, R. The control with different R leads to kinetic frozen-in of microstructures corresponding to a different combination parameter chi (eff)Z of the drying films (where chi (eff) is the effective interaction parameter of the polymer solution in the cast film and Z the number of "blobs" of size equal to the correlation length one block copolymer chain contains), for which faster evaporation rates result in microstructures of smaller chi (eff)Z. As R was decreased from rapid evaporations (similar to0.1 mL/h), the microstructure evolved from a totally disordered one sequentially to inverted phases consisting of spheres and then cylinders of polybutadiene (PB) in a PS matrix and finally reached the equilibrium phase, namely cylinders of PS in a PB matrix. We interpret the formation of inverted phases as due to the increased relative importance of entropy as chi (eff)Z is decreased, which may dominate the energy penalty for having a bigger interfacial area between the immiscible blocks in the inverted phases.
Resumo:
Well-defined block copolymers of L-lactide-b-epsilon-caprolactone were synthesized by sequential polymerization using a rare earth complex, Y(CF3COO)(3)/Al(iso-Bu)(3), as catalyst system. The compositions of the block copolymers could be adjusted by manipulating the feeding ratio of comonomers. The characterizations by GPC, H-1 NMR, C-13 NMR, and DSC displayed that the block copolymer, poly(epsilon-caprolactone-b-L-lactide) [P(CL-b-LLA)], had a narrow molecular weight distribution and well-controlled sequences without random placement.
Resumo:
The effect of adding diblock copolymer poly(styrene-b-4-vinylpyridine) (P(S-b-4VPy), to immiscible blends of syndiotactic polystyrene (sPS)/thermoplastic polyurethane (TPU) on the morphology, thermal transition, crystalline structure, and rheological and mechanical properties of the blends has been investigated. The diblock copolymer was synthesized by sequential anionic copolymerization and was melt-blended with sPS and TPU. Scanning electron microscopy (SEM) showed that the added block copolymer reduced the domain size of the dispersed phase in the blends. Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) revealed that the extent of compatibility between sPS and TPU affected the crystallization of the sPS in the blends. Tensile strength and elongation at break increased, while the dynamic modulus and complex viscosity decreased with the amount of P(S-b-4VPy) in the blend. The compatibilizing effect of the diblock copolymer is the result of its location at the interface between the sPS and the TPU phases and penetration of the blocks into the: corresponding phases, i.e. the polystyrene block enters the noncrystalline regions of the sPS, and the poly(4-vinylpyridine) block interacts with TPU through intermolecular hydrogen bonding. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The compatibilizing effect and mechanism of poly(styrene-b-4-vinylpyridine) diblock copolymer, P(S-b-4VPy), on the immiscible blend of polystyrene (PS)/zinc salt of sulphonated polystyrene (Zn-SPS) were studied. SEM results show that the domains of the dispersed phase in the blend become finer. DSC experiments reveal that the difference between the two T-g's corresponding to the phases in the blends becomes larger on addition of P(S-b-4VPy), mainly resulting from dissolving of the poly(4-vinylpyridine (P4VPy) block in the Zn-SPS phase. FTIR analysis shows that compatibility of P4VPy and Zn-SPS arises from the stoichiometric coordination of the zinc ions of Zn-SPS and pyridine nitrogens of P4VPy. SAXS analysis indicates the effect of the P(S-b-4VPy) content on the structure of the compatibilized blends. When the content of the block copolymer is lower than 4.1 wt%, the number of ion pairs in an aggregate in the Zn-SPS becomes smaller, and aggregates in ionomer in the blend become less organized with increasing P(S-b-4VPy). When the P(S-b-4VPy) content in the blend is up to 7.4 wt%, a fraction of P(S-b-4VPy) form a separate domain in the blend. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The compatibilization effect of poly(styrene-b-2-ethyl-2-oxazoline) diblock copolymer, P(S-b-EOx), on immiscible blends of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and poly(ethylene-co-acrylic acid) (EAA) is examined in terms of phase structure and thermal, rheological and mechanical properties, and its compatibilizing mechanism is investigated by Fourier-transform infrared spectroscopy. The block copolymer, synthesized by a mechanism transformation copolymerization, is used in solution blending of PPO/EAA. Scanning electron micrographs show that the blends exhibit a more regular and finer dispersion on addition of a small amount of P(S-b-EOx). Thermal analysis indicates that the grass transition of PPO and the lower endothermic peal; of EAA components become closer on adding P(S-b-EOx), and the added diblock copolymer is mainly located at the interface between the PPO and EAA phases. The interfacial tension estimated by theological measurement is significantly reduced on addition of a small amount of P(S-b-EOx). The tensile strength and elongation at break increase with the addition of the diblock copolymer for PPO-rich blends, whereas the tensile strength increases but the elongation at break decreases for EAA-rich blends. This effect is interpreted in terms of interfacial activity and the reinforcing effect of the diblock copolymer, and it is concluded that the diblock copolymer plays a role as an effective compatibilizer for PPO/EAA blends. The specific interaction between EAA and polar parts of P(S-b-EOx) is mainly hydrogen bonding. (C) 1998 Elsevier Science Ltd. All rights reserved.