142 resultados para BISMUTH-MODIFIED PT(111)
Resumo:
In this paper, a simple route for the preparation of Pt nanoparticles is described. PtCl62- and [tetrakis-(N-methylpyridyl)porphyrinato] cobalt (CoTMPyP) were assembled on a 4-aminobenzoic acid modified glassy carbon electrode through the layer-by-layer method. The three-dimensional Pt nanoparticle films are directly formed on an electrode surface by electrochemical reduction of PtCl62- sandwiched between CoTMPyP layers. Regular growth of the multilayer films is monitored by UV-vis spectroscopy. X-ray photoelectron spectroscopy verifies the constant composition of the multilayer films containing Pt nanoparticles. Atomic force microscopy proves that the as-prepared Pt nanoparticles are uniformily distributed with average particle diameters of 6-10 nm. The resulting multilayer films containing Pt nanoparticles on the modified electrode possess catalytic activity for the reduction of dissolved oxygen. Rotating disk electrode voltammetry and rotating ring-disk electrode voltammetry confirm that Pt nanoparticle containing films can catalyze an almost four-electron reduction of O-2 to water in 0.5 M H2SO4 solution.
Resumo:
A polythiophene film was electrochemically deposited on a Pt micro-plate electrode and investigated by cyclic voltammetry and in-situ reflection microscopic FTIR spectroscopy. The FTIR analysis showed that the electropolymerization of thiophene on the Pt surface was affected Lv the surface adsorption processes of thiophene molecules. Two adsorption modes were identified. Two structure models of the polythiophene chain were observed simultaneously. It was proposed that the good conductibility of the polythiophene film was originated from a co-vibratory equilibrium of the link part of model I and model II.
Resumo:
Plussian blue(PB)/Pt modified electrode Tvas studied in the CdCl2 electrolyte solution by cyclic voltammetry and in situ FTIR spectroelectrochemistry. It was found that Cadmium ion was capable of substituting the high-spin iron of PB in an electrochemically induced substitution reaction and hexacyanoferrate cadmium (CdHCF) can be formed in the PB film. But PB and CdHCF in mixture film showed their own electrochemistry properties without serious effect on each other. The mechanism of substitution reaction has been given in detail.
Resumo:
The electrocatalytic oxidation of methanol on polypyrrole (PPy) film modified with platinum microparticles has been studied by means of electrochemical and in situ Fourier transform infrared techniques. The Pt microparticles, which were incorporated in the PPy film by the technique of cyclic voltammetry, were uniformly dispersed. The modified electrode exhibits significant electrocatalytic activity for the oxidation of methanol. The catalytic activities were found to be dependent on Pt loading and the thickness of the PPy film. The linearly adsorbed CO species is the only intermediate of electrochemical oxidation of methanol and can be readily oxidized at the modified electrodes. The enhanced electrocatalytic activities may be due to the uniform dispersion of Pt microparticles in the PPy film and the synergistic effects of the highly dispersed Pt microparticles and the PPy film. Finally, a reaction mechanism is suggested.
Resumo:
Abnormal IR spectra of CO adsorbed at the surface of glass carbon electrode modified with polypyrrole film with Pt microparticles are reported.
Resumo:
An assay procedure utilizing pulsed amperometric detection at a platinum-particles modified electrode has been developed for the determination of cysteine and glutathione in blood samples following preliminary separation by reversed-phase liquid chromatography. A chemically modified electrode (CME) constructed by unique electroreduction from a platinum-salt solution to produce dispersed Pt particles on a glassy carbon surface was demonstrated to catalyze the electo-oxidation of sulfhydryl-containing compounds: DL-cysteine (CYS), reduced glutathione (GSH). When used as the sensing electrode in flow-system pulsed-amperometric detection (PAD), electrode fouling could be avoided using a waveform in which the cathodic reactivation process occurred at a potential of - 1.0 V vs. Ag/AgCl to achieve a cathodic desorption of atomic sulfur. A superior detection limit for these free thiols was obtained at a Pt particle-based GC electrode compared with other methods; this novel dispersed Pt particles CME exhibited high electrocatalytic stability and activity when it was employed as an electrochemical detector in FIA and HPLC for the determination of those organo-sulfur compounds.
Resumo:
A modified method for dispersing platinum particles on a glassy carbon (GC) electrode was investigated. The ultramicro Pt particle-modified electrode obtained exhibited high catalytic stability and activity towards the oxidation of some halide ions (Br-, I-) and inorganic sulfur species (S2O32-, SO32- and SCN-). These anions were separated and detected by using ion chromatography and electrochemical detection via this novel dispersed Pt particles-GC working electrode. The detection limits were 20 ng/ml for Br-, 1.0 ng/ml for I-, 10 ng/ml for SO32- and 4.0 ng/ml for SCN-. This method was employed for the analysis of industrial and environmental waste waters.
Resumo:
The heterogeneous electron transfer reaction of hemeproteins including hemoglobin, myoglobin and cytochrome C at Pt mesh electrode adsorbed methylene blue has been investigated. Thin-layer spectroelectrochemical technique was used for observing the electron transfer processes of three kinds of proteins, and the corresponding electrode rate constants were measured.
Resumo:
The electrochemical behavior of myoglobin at a Brilliant Cresyl Blue (BCB) modified platinum gauze electrode and spiral pt wire in the BCB solution in optically transparent thin layer cell base been investigated by using cyclic potential-absorbance method and double potential step chronoabsorptometry. The results reveal a reversible electron transfer resection of myoglobin. Exhaustive reductive and oxidative electrolyses are achieved at the modified platinum surface in 20 and 100s respectively. The formal h...
Resumo:
A Nafion/ionophore, 4-tert-butylcalix[4]arene-tetrakis(N,N-dimethylthioacetamide) composite coated and bismuth film modified glassy carbon electrode. (GC/NA-IONO/BiFE) was described to determine trace lead sensitively and selectively. The characteristics of such modified GC/NA-IONO/BiFE were studied by scanning electron microscopy and cyclic voltammetry. The influence of various experimental parameters upon the stripping lead signal at the GC/NA-IONO/BiFE was explored. Under the optimized conditions, the differential pulse voltammetric stripping response is highly linear over the 0.1-8.0 nM lead range examined (180s preconcentration at -1.2V), with a detection limit of 0.044nM and good precision (RSD=5.4% at 0.5nM). Also applicability to seawater samples was demonstrated at such modified electrode. The high selectivity of ionophore coupled with the excellent electrochemical characteristics of bismuth endow the GC/NA-IONO/BiFE a promising and robust tool for monitoring of trace lead rapidly and precisely.
Resumo:
This article reported the NaA zeolite membranes with high permeance synthesized with microwave heating method under different conditions: (1) on a macroporous substrate in gel, (11) on a mesoporous/macroporous (top-mesoporous-layer-modified macroporous) substrate in gel, and (111) on a mesoporous/macroporous substrate in sol. In general, the H-2 permeance of the NaA membranes by microwave heating in gel was usually at the level of 10(-6) mol s(-1) m(-2) Pa-1, much higher than that by the conventional hydrothermal synthesis. At similar H-2/C3H8 permselectivity. On the substrate modified mesoporous top layer, the H-2 permeance of the NaA membranes by microwave heating in gel or sol was further enhanced, while maintaining comparable H-2/C3H8 permselectivity, due to the prevention of penetration of the reagent into the pores of the macroporous substrate. Meanwhile, the synthesis took less time in sol than in gel on the mesoporous/macroporous substrate. The NaA membranes synthesized in sol had larger permeance than those in gel and underwent transformation in shorter time. The permeation of C3H8 suggested that there existed unwanted intercrystalline pores or defects in the membranes. © 2005 Elsevier B.V. All rights reserved.
Resumo:
The structural features and catalytic properties of Pt-Sn/CeO2 catalysts prepared by modified polyol method were extensively investigated for the complete oxidation of ethanol. CO chemisorption, TPR, DTA and XPS measurements identically indicated that the electronic configuration of Pt by Sn as well as the formation of PtSn alloy were the key factors in determining the nature of the active sites, A strong Pt/Sn atomic ratio dependence of catalytic perfortmances was observed. which was explained in terms of the change., in the Surface structure of metal phases and the electronic Pt-Sn interaction. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The Peierls-Nabarro model of the interfacial misfit dislocation array is analytically extended to a family of dislocations of greater widths. By adjusting a parameter, the width of the misfit dislocations, the distribution of the shear stress, and the restoring force law can be systematically varied. The smaller the amplitude of the restoring force, the wider the misfit dislocations and the lower the interfacial energy.