101 resultados para Analytical geometry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An arch-shaped beam with different configurations under electrostatic loading experiences either the direct pull-in instability or the snap-through first and then the pull-in instability. When the pull-in instability occurs, the system collides with the electrode and adheres to it, which usually causes the system failure. When the snap-through instability occurs, the system experiences a discontinuous displacement to flip over without colliding with the electrode. The snap-through instability is an ideal actuation mechanism because of the following reasons: (1) after snap-through the system regains the stability and capability of withstanding further loading; (2) the system flips back when the loading is reduced, i.e. the system can be used repetitively; and (3) when approaching snap-through instability the system effective stiffness reduces toward zero, which leads to a fast flipping-over response. To differentiate these two types of instability responses for an arch-shaped beam is vital for the actuator design. For an arch-shaped beam under electrostatic loading, the nonlinear terms of the mid-plane stretching and the electrostatic loading make the analytical solution extremely difficult if not impossible and the related numerical solution is rather complex. Using the one mode expansion approximation and the truncation of the higher-order terms of the Taylor series, we present an analytical solution here. However, the one mode approximation and the truncation error of the Taylor series can cause serious error in the solution. Therefore, an error-compensating mechanism is also proposed. The analytical results are compared with both the experimental data and the numerical multi-mode analysis. The analytical method presented here offers a simple yet efficient solution approach by retaining good accuracy to analyze the instability of an arch-shaped beam under electrostatic loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermally induced evolution of phase transformations is a basic physical-chemical process in the dissociation of gas hydrate in sediment (GHS). Heat transfer leads to the weakening of the bed soil and the simultaneous establishment of a time varying stress field accompanied by seepage of fluids and deformation of the soil. As a consequence, ground failure could occur causing engineering damage or/and environmental disaster. This paper presents a simplified analysis of the thermal process by assuming that thermal conduction can be decoupled from the flow and deformation process. It is further assumed that phase transformations take place instantaneously. Analytical and numerical results are given for several examples of simplified geometry. Experiments using Tetra-hydro-furan hydrate sediments were carried out in our laboratory to check the theory. By comparison, the theoretical, numerical and experimental results on the evolution of dissociation fronts and temperature in the sediment are found to be in good agreement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the influence of contact geometry, including the round tip of the indenter and the roughness of the specimen, on hardness behavior for elastic plastic materials is studied by means of finite element simulation. We idealize the actual indenter by an equivalent rigid conic indenter fitted smoothly with a spherical tip and examine the interaction of this indenter with both a flat surface and a rough surface. In the latter case the rough surface is represented by either a single spherical asperity or a dent (cavity). Indented solids include elastic perfectly plastic materials and strain hardening elastic-plastic materials, and the effects of the yield stress and strain hardening index are explored. Our results show that due to the finite curvature of the indenter tip the hardness versus indentation depth curve rises or drops (depending on the material properties of the indented solids) as the indentation depth decreases, in qualitative agreement with experimental results. Surface asperities and dents of curvature comparable to that of the indenter tip can appreciably modify the hardness value at small indentation depth. Their effects would appear as random variation in hardness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analytical solution of a multidimensional Langevin equation at the overdamping limit is obtained and the probability of particles passing over a two-dimensional saddle point is discussed. These results may break a path for studying further the fusion in superheavy elements synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

he first order perturbations of the energy levels of a stationary hydrogen atom in a static external gravitational field, with Schwarzschild metric, are investigated. The energy shifts are calculated for the relativistic 1S, 2S, 2P, 3S, 3P, 3D, 4S, 4P, 4D, and 4F levels. The results show that the energy-level shifts of the states with total angular momentum quantum number 1/2 are all zero, and the ratio of absolute energy shifts with total angular momentum quantum number 5/2 is 145. This feature can be used to help us to distinguish the gravitational effect from other effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

目前加速速度范围在0.01c—0.3c的粒子的超导腔主要使用四分之一波长腔型。用于不同加速器上的频率范围在50—240MHz的四分之一波长腔在建造或者预研中。这种腔型的一个不足是其横向电磁成分会造成束流偏转效应,从而导致发射度的增长和束流的溢漏,在强流重离子加速器中这种效应尤为严重。对中国科学院近代物理研究所超导直线加速器中的频率为80.5和161MHz的四分之一波长腔的偏转效应进行了分析,计算结果表明,在四分之一腔体的设计时需要考虑到束流偏转的修正,这通常需要在漂移管端面上削适当大小的倾角来实现。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geometry optimization and harmonic vibrational frequency calculations have been performed on the (X) over bar (2)A(1) state of NO2 and (X) over bar (1)A(1) state of NO2-. Franck-Condon analyses and spectral simulations were carried out on the NO2((X) over bar (2)A(1))-NO2-((X) over bar (1)A(1)) photo detachment process. In addition, the equilibrium geometry parameters, r(NO)= 1.248 +/- 0.005 Angstrom and angle(ONO) 116.8 +/- 0.5degrees, of the (X) over bar (1)A(1) state of NO2-, are derived by employing an iterative Franck-Condon analysis procedure in the spectral simulation. Our conclusions regarding the anion geometry suggest a reinterpretation of the results of Woo et al. (C) 2004 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

set of energies at different internuclear distances for the ground electronic state and two excited electronic states of NaH molecule have been calculated using valence internally contracted multireference configuration interaction(MRCI) including Davidson correction and three basis sets. Then, a potential energy curve (PEC) for each state was determined by extrapolating MRCI energies to the complete basis sets limit. Based on the PECs, accurate vibrational energy levels and rotational constants were determined. The computational PECs are were fitted to analytical potential energy functions using the Murrell-Sorbie potential function. Then, accurate spectroscopic parameters were calculated. Compared with experimental results, values obtained with the basis set extrapolation yield a potential energy curve that gives accurate vibrational energy levels, rotational constants and spectroscopic parameters for the NaH molecule. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium properties and potential energy curves of the ground electronic state of CaF have been calculated using the Brueckner Doubles calculation with a triples contribution added [BD(T)] and the gradient-corrected density functional theory with three-parameter exact exchange mixing (B3LY-P) method, with 6-311 + G*,6-311 + G(2df,2pd) and 6-311 + G(3df,3pd) basis sets. All the computational PECs are fitted to analytical potential energy functions using Murrell-Sorbie, Huxley and Tang-Toennies potentials. Based on this, the spectroscopic parameters are calculated, and then compared with some other theoretical and experimental data. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive, critical and up-to-date review of analytical methods developed during the last decade for metals present in sea water is presented. Separate sections are devoted to singular and multimetal determinations. Furthermore, a critical comparison of relative merits or demerits of a particular procedure is made in terms of sensitivity, selectivity and precision. Various aspects of analysis of sea water samples for metals are summarized, and the future trends are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

“Dissolved” (< 0.4 μm filtered) and “total dissolvable” (unfiltered) trace element samples were collected using “clean” sampling techniques from four vertical profiles in the eastern Atlantic Ocean on the first IOC Trace Metals Baseline expedition. The analytical results obtained by 9 participating laboratories for Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, and Se on samples from station 4 in the northeast Atlantic have been evaluated with respect to accuracy and precision (intercomparability). The data variability among the reporting laboratories was expressed as 2 × SD for a given element and depth, and was comparable to the 95% confidence interval reported for the NASS seawater reference standards (representing analytical variability only). The discrepancies between reporting laboratories appear to be due to inaccuracies in standardization (analytical calibration), blank correction, and/or extraction efficiency corrections.Several of the sampling bottles used at this station were not adequately pre-cleaned (anomalous Pb results). The sample filtration process did not appear to have been a source of contamination for either dissolved or particulate trace elements. The trace metal profiles agree in general with previously reported profiles from the Atlantic Ocean. We conclude that the sampling and analytical methods we have employed for this effort, while still in need of improvement, are sufficient for obtaining accurate concentration data on most trace metals in the major water masses of the oceans, and to enable some evaluation of the biogeochemical cycling of the metals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study relates tidal channel cross-sectional area (A) to peak spring discharge (Q) via a physical mechanism, namely the stability shear stress ( tau sub(S)) just necessary to maintain a zero gradient in net along-channel sediment transport. It is assumed that if bed shear stress ( tau ) is greater than tau sub(S), net erosion will occur, increasing A, and reducing tau similar to (Q/A) super(2) back toward tau sub(S). If tau < tau sub(S) there will be net deposition, reducing A and increasing tau toward tau sub(S). A survey of the literature allows estimates of Q and A at 242 sections in 26 separate sheltered tidal systems. Assuming a single value of tau sub(S) characterizes the entire length of a given tidal channel, it is predicted that along-channel geometry will follow the relation Ah sub(R) super(1) super(/) super(6) similar to Q. Along-channel regressions of the form Ah sub(R) super(1) super(/) super(6) similar to Q super( beta ) give a mean observed value for beta of 1.00 plus or minus 0.06, which is consistent with this concept. Results indicate that a lower bound on tau sub(S) (and an upper bound on A) for stable channels is provided by the critical shear stress ( tau sub(C)) just capable of initiating sediment motion. Observed tau sub(S) is found to vary among all systems as a function of spring tidal range (R sub(sp)) according to the relation tau sub(S) approximately 2.3 R sub(sp) super(0.79) tau sub(C). Observed deviations from uniform tau sub(S) along individual channels are associated with along-channel variation in the direction of maximum discharge (i.e., flood-versus ebb-dominance).