105 resultados para Ammonium, dissolved
Resumo:
A suitable method for the pretreutment of dissolved nitrate samples in seawaters for nitrogen isotopic analysis was established. First, the seawater samples were processed by removing nitrite and amonium. Then Devard's alloy was added in sample for conversion of dissolved nitrate to ammonium. The sample was distilled, and then the ammonium condensate was collected with zeolite. after distillation, the collected condensate was filtered and prepared for determining nitropic values. Some tests of the method were conducted. The distillation condition, the influence of salinity on nitrogen isotopic analysis, absorption of ammonium onto zeolite and an improved method on a large volume of seawater were discussed in this study. The results showed that the distillation step had an average recovery of (104.9 +/- 4.2) % (n = 6) when distillating every 300 mL aliquot of the sample under a strong alkaline condition with 0.5 g devard's alloy and a distillation time of 30 min. The nitrogen isotopic fractionation decreased markedly when salinity was increased from 0% to 0.5%; further increase(1% - 3.5%) showed little effect. The adsorption rate of ammonium onto zeolite had a high yield of (95.96 +/- 1.08) % (n = 6) in average. An improved collection method was used to process a large volume of seawater with several distillations, and had good effect on analysis. The method had been applied to analyze water samples collected from Changjiang estuary. The analytical results indicate that the method is suitable for delta N-15 analysis of dissolved nitrate in seawaters. The present method could provide valuable information about the source and cycle mechanism of dissolved nitrogen in estuary waters.
Resumo:
The nitrogen isotopic composition of dissolved nitrate (delta N-15-NO3-) in surface water of the Yangtze River estuary was determined in four seasons of 2006. delta N-15-NO3- ranged from 0.4 parts per thousand to 6.5 parts per thousand and varied with seasons and geographic regions, reflecting the dynamics of nitrogen cycling in the estuarine ecosystem. delta N-15-NO3- was markedly lower in February than in other seasons and exhibited conservative mixing, which was probably attributed to the NO3- being sourced from the atmospheric deposition and agricultural fertilizer. In the upper estuary, the influence of riverine inputs was important during all surveys. in the turbidity maximum zone, nitrification was found with nitrate depleted in N-15 in May, whereas denitrification resulting in heavy delta N-15-NO3- played an important role in August. More enriched delta N-15-NO3- values coinciding with losses of nitrate concentrations based on the conservative mixing model were found in the adjacent marine area in May, and may reflect obvious phytoplankton assimilation of dissolved nitrate. In this manner, delta N-15-NO3- may be a sensitive indicator of nitrogen sources and biogeochemical processing existing in this estuary in conjunction with the variations of dissolved nitrate and other environmental factors. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Sea water samples were collected in the East China Sea in March and April, 2005, and three-dimensional fluorescence of dissolved organic matter was measured by fluorescence excitation-emission matrix spectroscopy. The position, number and intensity of fluorescence peak in the spectra and the relations of the peaks were analyzed to determine the type, distribution and origin of the fluorescence dissolved organic matter. Seven types of fluorescence peaks were detected from the samples. There are protein-like fluorescence peaks B with Ex(max)/Em(max) = 275/300 nm, D with Ex(max)/Em(max) = 225/295-305 nm, T with Ex(max)/Em(max) = 280/345 nm, and S with Ex(max)/Em(max) = 225-240/320-350 nm, two humic-like peaks A with Ex(max)/Em(max) = 250-255/410-455 nm and C 335-345/410-440 ran, and marine humic peak M with Ex(max)/Em(max) = 305 nm/400-420 nm. Peaks B, S and A appeared in all surveyed area. Peaks T and D appeared in the north of the surveyed area. Peaks M and C only appeared in a few stations. In the surface layer, the source of the fluorescence dissolved organic matter might be the fresh water outflow of the Yangtze River, while the fluorescence dissolved organic matter in the middle layer had double sources from the Yangtze River and the phytoplankton. The good correlationships of different fluorescence peaks showed the same source or some relationship between the protein-like and the humic-like fluorescence dissolved organic matter.
Resumo:
Filtration and cross-flow ultrafiltration techniques were used to separate culture media of Prorocentrum donghaiense at the exponential growth, stationary and decline stages into < 0.45 mu m filtrate, 100 kDa-0.45 mu m, 10-100 kDa and 1-10 kDa retentate and < 1 kDa ultrafiltrate fractions. The fluorescence. properties of different molecular weights of dissolved organic matter (DOM) were measured by excitation-emission matrix spectra. Protein-like and humic-like fluorophores were observed in the DOM produced by P. donghaiense. The central positions of protein-like fluorophores showed a red shift with prolonged growth duration, shifting from tyrosine-like properties at the exponential growth stage to tryptophan-like properties at the stationary and decline stages. The excitation wavelengths of protein-like fluorophores exhibited some change in the exponential growth and stationary stages with increased molecular size, but showed little change in the decline stage. However, the emission wavelengths in the decline stage exhibited a blue shift. Very distinct C type and A type peaks in humic-like fluorophores were observed. With a prolonged culture time, the intensities of both of the peaks became strong and the excitation wavelengths of peak A showed a red shift, while the A:C ratios fell. More than 94% of fluorescent DOM was in the lower than 1 kDa molecular weight fraction.
Resumo:
Fluorescence excitation-emission spectroscopy (EEMS) was employed to analyze the 3-dimensional fluorescence of dissolved organic matter in the East China Sea after diatom red tide dispersion. The relationships between fluorescence peak intensity, and salinity and chlorophyll-a were discussed. The centers of protein-like fluorescence peaks dispersed at Ex(max)/Em(max) = 270-280/290-315 nm (Peak B), 220-230/290-305 nm (Peak D), 230-240/335-350 nm(Peak S)and 280/320 nm(Peak T). Two humic-like peaks appeared at 255-270/435-480 nm (Peak A) and 330-350/420-480 nm(Peak C). High tyrosine-like intensity was observed in diatom red tide dispersion area, and tryptophan-like fluorescence was also found which was lower. High FIB/FIS showed that diatom red tide produced much tyrosine-like matter during dispersion. Peaks S, A and C had positive correlation with one another, and their distributions were similar, which decreased with distance increasing away from the shore. Good negative correlations between peaks S, A and C and salinity suggested that Jiangsu-Zhejiang coastal water was the same source of then-L Correlations between fluorescence peak intensity and chlorophyll-a were not remarkable enough to clear the relationship between fluorescence and living algal matter. It was supposed that the living algal matter contributed little to the fluorescence intensity of algal dispersion seawater.
Resumo:
On the basis of data collected in the Jiaozhou Bay in June and July 2003, the DIC distribution in seawater is studied, and an average air-sea flux of CO2 is estimated. The results show that the content of DIC inside the bay is markedly higher than outside the bay in June, but the content of DIC outside the bay is markedly higher than inside the bay in July. The trend of DIC distribution inside the bay is similar, viz. the content is the maximum in the northeast, then decreases gradually toward the west, and the content is the minimum in the west. The total trend of vertical distribution is to increase gradually from surface to bottom. This characteristic of DIC distribution is determined by Jiaozhou Bay hydrology and there is a close relation between DIC and particulate N,P. Average CO2 flux across the air-sea interface is 0.55 mol/(m(2.)a) in June and 0.72 mol/(m(2.)a) in July. Jiaozhou Bay is considered as a net annual source for atmospheric CO2 in June and July, and the total CO2 flux from seawater into atmosphere is about 740 t in June and 969 t in July.
Resumo:
Dissolved inorganic carbon (DIC) account for more than 95% of total carbon in seawater, so it is necessary to make reliable and precise measurements of DIC to study marine carbon cycling. In order to establish a simple and speed method, an airproof device of gas extraction-absorption was designed. Finally a simple method was developed for the determination of DIC in seawater through a large mount of experiments. The determination procedure is as follows: 100 similar to 150 mL seawater was put into conical flask, then add 10% H3PO4, the DIC in seawater sample was dissolved to form CO2 gas and carried by pure N-2, then the CO2 gas was absorbed by two grades 0.1 mol/L NaOH solution. Finally the absorbed solution was titrated by HCl standard solution of 0.01000 mol/L with the end points detected with the indicator phenolphthalein and bromocresol green-methyl red mixture. The precision and accuracy of the method were satisfied. This method was used to analyse seawater samples from Jiaozhou bay in June, 2003. The result shows that the average DIC in surface seawater is 2066 mumol/L, DIC in bottom seawater is 2075 mumol/L inside bay, but the average DIC in surface seawater is 1949 mumol/L, DIC in bottom seawater is 2147 mumol/L outside bay.
Resumo:
Dissolved organic carbon (DOC), stable carbon isotopic (delta(13)C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. delta(13)C values of both POC (-23.8parts per thousand to -26.8parts per thousand) and DOC (-25.0parts per thousand to -29.0parts per thousand) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in delta(13)C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-delta(13)C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-delta(13)C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10-30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
High molecular weight dissolved organic matter (HMW-DOM) represents an important component of dissolved organic carbon (DOC) in seawater and fresh-waters. In this paper, we report measurements of stable carbon (delta(13)C) isotopic compositions in total lipid, total hydrolyzable amino acid (THAA), total carbohydrate (TCHO) and acid-insoluble "uncharacterized" organic fractions separated from fourteen HMW-DOM samples collected from four U.S. estuaries. In addition, C/N ratio, delta(13) C and stable nitrogen (delta(15)N) isotopic compositions were also measured for the bulk HMW-DOM samples. Our results indicate that TCHO and THAA are the dominant organic compound classes, contributing 33-46% and 13-20% of the organic carbon in HMW-DOM while total lipid accounts for only <2% of the organic carbon in the samples. In all samples. a significant fraction (35-49%) of HMW-DOM was included in the acid-insoluble fraction. Distinct differences in isotopic compositions exist among bulk samples, the compound classes and the acid-insoluble fractions. Values of delta(13)C and delta(15)N measured for bulk HMW-DOM varied from -22.1 to -30.1parts per thousand and 2.8 to 8.9parts per thousand, respectively and varied among the four estuaries studied as well. Among the Compound classes, TCHO was more enriched in C-13 (delta(13)C = -18.5 to -22.8parts per thousand) compared with THAA (delta(13)C = -20.0 to -29.6parts per thousand) and total lipid (delta(13)C = -25.7 to -30.7parts per thousand). The acid-insoluble organic fractions, in general, had depleted C-13 values (delta(13)C = -23.0 to -34.4parts per thousand). Our results indicate that the observed differences in both delta(13)C and delta(15)N were mainly due to the differences in sources of organic matter and nitrogen inputs to these estuaries in addition to the microbial processes responsible for isotopic fractionation among the compound classes. Both terrestrial sources and local sewage inputs contribute significantly to the HMW-DOM pool in the estuaries studied and thus had a strong influence on its isotopic signatures. Copyright (C) 2004 Elsevier Ltd.
Resumo:
High-molecular-weight dissolved organic matter (HMW-DOM, > 1,000 Daltons) is actively involved in the global biogeochemical cycling of many elements, but its carbon sources and detailed formation pathways are still not well understood. In this study, we measured bulk stable carbon and nitrogen isotopic ratios, lipid composition, and compound-specific carbon isotopic ratios of HMW-DOM samples collected from four U.S. estuaries (Boston Harbor/Massachusetts Bay, Delaware/Chesapeake Bay, San Diego Bay, and San Francisco Bay). Analytical results show (1) a fraction of HMW-DOM (lipid associated) in estuarine and coastal waters is derived from bacteria and phytoplankton; (2) this fraction of HMW-DOM is formed by various release processes of bacterial membrane components and bacterial reworking of phytoplankton-derived material; (3) this fraction of HMW-DOM is generally present in all samples from different coastal systems despite variable organic matter inputs and environmental conditions, suggesting an important bacterial role in HMW-DOM formation.
Resumo:
The distribution of dissolved organic nitrogen (DON) and nitrate were determined seasonally (winter, spring and summer) during three years along line P, i.e. an E-W transect from the coast of British Columbia, Canada, to Station P (50degreesN, 145degreesW) in the subarctic North East Pacific Ocean. In conjunction, DON measurements were made in the Straits of Juan de Fuca and Georgia within an estuarine system connected to the NE Pacific Ocean. The distribution of DON at the surface showed higher values of 4-17 muM in the Straits relative to values of 4-10 muM encountered along line P, respectively. Along line P, the concentration of DON showed an inshore-offshore gradient at the surface with higher values near the coast. The equation for the conservation of DON showed that horizontal transport of DON (inshore-offshore) was much larger than vertical physical mixing. Horizontal advection of DON-rich waters from the coastal estuarine system to the NE Pacific Ocean was likely the cause of the inshore-offshore gradient in the concentration of DON. Although the concentration of DON was very variable in space and time, it increased from winter to summer, with an average build up of 4.3 muM in the Straits and 0.7 muM in the NE subarctic Pacific. This implied seasonal DON sources of 0.3 mmol N m(-2) d(-1) at Station P and 1.5 mmol N m(-2) d(-1) in the Straits, respectively. These seasonal DON accumulation rates corresponded to about 15-20% of the seasonal nitrate uptake and suggested that there was a small seasonal build up of labile DON at the surface. However, the long residence times of 180-1560 d indicated that the most of the DON pool in surface waters was refractory in two very different productivity regimes of the NE Pacific. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Stable isotopes of N provide a new approach to the study of algal production in the ocean, yet knowledge of the isotope fractionation (epsilon) in various oceanic regimes is lacking. Here we report large and rapid changes in isotope composition (delta(15)N) of 2 coastal diatoms and 2 clones (open and coastal) of a coccolithophore grown in the simultaneous presence of nitrate, ammonium and urea under varying conditions of N availability (i.e. N-sufficiency and N-starvation followed by N-resupply) and hence different physiological states, During N-sufficiency, the delta(15)N of particulate organic N (PON) was well reproduced, using a model derived from Rayleigh distillation theory, with constant epsilon similar to that for growth on each individual N source. However, following N-resupply, the variations in delta(15)N(PON) could be well explained only in the case of the open ocean Emiliania huxleyi, with epsilon similar to N-sufficient conditions. It was concluded that the mechanism of isotope fractionation changed rapidly with N availability for the 3 coastal clones. However, in the case of E. huxleyi isolated from the Subarctic Pacific Ocean, no evidence of a change in mechanism was found, suggesting that perhaps open ocean species can quickly recover from N-depleted conditions.
Resumo:
The field observation of this study was carried out in the Changjiang Estuary from May 19 to 26,2003, just a few days before the Three Gorges Dam began to store water. A total of 29 stations, including 2 anchor stations, were distributed through almost the whole salinity gradient Based on the data gained from these stations, the biogeochemical characteristics of dissolved oxygen (DO) were examined. Spatial distribution of DO concentrations showed the pattern that it increased in a downriver direction. DO concentration generally varied within a narrow range of 733-8.10 mg l(-1) in the freshwater region and the west part of the mixed water region, and after that it increased rapidly. In vertical direction, the differences in DO concentrations between surface and 2 m above the bottom were big at the stations with water depths exceeding 20 m; DO concentration up to 14.88 mg l(-1) was recorded at the sea surface, while at 2 m above the bottom its concentration was only about 4 mg l(-1). The fluctuation in DO concentrations was small during a period of 48 h in the mixed water region and 2 m above the bottom of the seawater region; while it was large during the same period in the seawater region for surface and 5 m below the surface layer, and a maximum variation from 8.77 to 12.66 mg l(-1) in 4 h was recorded. Oxygen fluxes also showed a marked spatio-temporal variation. As a whole, the freshwater region and mixed water region were an oxygen sink while the seawater region was a source. Relationships between dissolved oxygen and some biogeochemical parameters which could markedly influence its spatio-temporal distribution were discussed in this paper. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3-N), ammonium (NH4-N), nitrite (NO2-N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3-N+NH4-N+NO2-N), SRP and DRSi were 131.6, 1.2 and 155.6 mu M, respectively. The maximum Chl a concentration was 19.5 mg m(-3) in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 mu M and from 0.4 to 0.95 mu M, respectively. From 1963 to 2004, N:P ratios also increased from 30-40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m(-3), nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l(-1), much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.