72 resultados para Alarm processing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical method to estimate temperature distribution during the cure of epoxy-terminated poly(phenylene ether ketone) (E-PEK)-based composite is suggested. The effect of the temperature distribution on the selection of cure cycle is evaluated using a suggested alternation criterion. The effect of varying heating rate and thickness on the temperature distribution, viscosity distribution and distribution of the extent of cure reaction are discussed based on the combination of the here-established temperature distribution model and the previously established curing kinetics model and chemorheological model. It is found that, for a thin composite (<=10mm) and low heating rate (<=2.5K/min), the effect of temperature distribution on cure cycle and on the processing window for pressure application can be neglected. Low heating rate is of benefit to reduce the temperature gradient. The processing window for pressure application becomes narrower with increasing thicknesses of composite sheets. The validity of the temperature distribution model and the modified processing window is evaluated through the characterization of mechanical and physical properties of E-PEK-based composite fabricated according to different temperature distribution conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curing temperature, pressure, and curing time have significant influence on finished thermosetting composite products. The time of pressure application is one of the most important processing parameters in the manufacture of a thermosetting composite. The determination of the time of pressure application relies on analysis of the viscosity variation of the polymer, associated with curing temperature and curing time. To determine it, the influence of the time of pressure application on the physical properties of epoxy-terminated poly(phenylene ether ketone) (E-PEK)-based continuous carbon fiber composite was studied. It was found that a stepwise temperature cure cycle is more suitable for manufacture of this composite. There are two viscosity valleys, in the case of the E-PEK system, associated with temperature during a stepwise cure cycle. The analysis on the effects of reinforcement fraction and defect content on the composite sheet quality indicates that the width-adjustable second viscosity valley provides a suitable pressing window. The viscosity, ranging from 400 to 1200 Pa . s at the second viscosity valley, is the optimal viscosity range for applying pressure to ensure appropriate resin flow during curing process, which enables one to get a finished composite with optimal fiber volume fraction and low void content. (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Epoxy-terminated poly(phenylene ether ketone) (E-PEK) developed in this Institute is a candidate matrix resin for polymer composites as structural materials. Cure cycles for this reaction system were simulated according to the previously established processing model. It is found that for the E-PEK system, the curing process is best completed by a stepwise cure cycle comprising two isothermal processes at different temperatures, T-1 and T-2. The cure cycles over a wide range of processing parameters simulated, based on the established processing model, indicate that the processing window is width-adjustable. Analysis of the mechanical properties of the composite sheets showed that the simulated cure cycles are acceptable and reliable. (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The curing reaction process of epoxy-terminated poly(phenylene ether ketone) (E-PEK) with 4,4'-diaminodiphenyl sulfone (DDS) and hexahydrophthalic acid anhydride (Nadic) as curing agents was investigated using isothermal differential scanning calorimetry (IDSC) and nonisothermal differential scanning calorimetry (DDSC) techniques. It was found that the curing reactions of E-PEK/DDS and E-PEK/Nadic are nth-order reactions but not autoaccelerating. The experimental results revealed that the curing reaction kinetics parameters measured from IDSC and DDSC are not equivalent. This means that, in the curing reaction kinetics model for our E-PEK system, both isothermal and nonisothermal reaction kinetics parameters are needed to describe isothermal and nonisothermal curing processes, The isothermal and nonisothermal curing processes were successfully simulated using this model. A new extrapolation method was suggested. On the basis of this method the maximum extent of the curing reaction (A(ult)) that is able to reach a certain temperature can be predicted. The A(ult) for the E-PEK system estimated by the new method agrees well with the results obtained from another procedure reported in the literature. (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemorheology and corresponding models for an epoxy-terminated poly(phenylene ether ketone) (E-PEK) and 4,4'-diaminodiphenyl sulfone (DDS) system were investigated using a differential scanning calorimeter (DSC) and a cone-and-plate rheometer. For this system, the reported four-parameter chemorheological model and modified WLF chemorheological model can only be used in an isothermal or nonisothermal process, respectively. In order to predict the resin viscosity variation during a stepwise temperature cure cycle actually used, a new model based on the combination of the four-parameter model and the modified WLF model was developed. The combined model can predict the resin viscosity variation during a stepwise temperature cure cycle more accurately than the above two models. In order to simplify the establishment of this model, a new five-parameter chemorheological model was then developed. The parameters in this five-parameter model can be determined through very few rheology and DSC experiments. This model is practicable to describe the resin viscosity variation for isothermal, nonisothermal, or stepwise temperature cure cycles accurately. The five-parameter chemorheological model has also successfully been used in the E-PEK systems with two other curing agents, i.e., the diamine curing agent with the addition of a boron trifluride monoethylamine (BF3-MEA) accelerator and an anhydride curing agent (hexahydrophthalic acid anhydride). (C) 1997 John Wiley & Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blends of a liquid crystalline thermotropic copolyester (LCP70) and an amorphous phenolphthalein based poly(ether-ketone)(PEK-C) with two viscosities were prepared by melt blending. The blends' morphology, rheological and mechanical properties were investigated by DSC, SEM, mechanical and rheological tests. It was observed that the optimum composition of the PEK-C/LCP70 blend was 10 wt% LCP for both mechanical and rheological properties. When the LCP content was less than 10%, the LCP phase existed as finely dispersed fibrous domains with a diameter of about 1 mu m in the matrix, and both tensile and flexural properties were improved. In contrast, when the LCP content reached 20% or more, the LCP domains coalesced to ellipsoidal particles with a diameter of about 5 mu m, and the mechanical properties decreased as a result. It is demonstrated that pure PEK-C with a high viscosity which was difficult to process by melt extrusion, could be extruded conveniently when 10% LCP70 was incorporated. It is emphasized that LCP not only can be used as a reinforcing phase but also an effective processing agent for engineering thermoplastics, especially for those with high viscosity and narrow processing window. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The melt flow behaviour of LDPE/HDPE blends with various compositions have been determined by melt flow index (MFI) measurement. The effects of stabilizers, photo-sensitizers, multiple extrusions and short-term photooxidation have been studied. The results show that there is no marked thermal stability difference between homopolymers and blends without multiple extrusions, no matter whether stabilizers or photo-sensitizers are added. Multiple extrusions or photo-sensitizers reduce their thermal stability, shown by the decrease in MFI. The decrease in MFI of photooxidized samples does not imply serious structural change and shows that the active species formed during photooxidation induce a crosslinking reaction in the melt indexer. Multiple extrusions increase the number of active species formed in LDPE or blends and lead to an obvious decrease in MFI. It is suggested that LDPE and LDPE-rich blends after short-term photooxidation can be characterized by MFI measurement. In contrast, HDPE cannot be characterized by this method due to its linear structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

设计制作了一种基于多处理器的移动机器人分布式超声环境探测系统.该系统由上位工作模式控制模块和下位智能超声传感器阵列组成.下位智能超声传感器选用收发一体式超声传感器,每个传感器均由独立的微处理器控制,完成实时数据处理、抗干扰处理、故障报警以及并行数据通信等功能.上位工作模式控制模块可以根据不同的控制策略,使下位传感器阵列采用“阈值比较法”和“改进型递推均值滤波”算法及EERUF方法并行循环工作模式,实现不同方向传感器分组并行工作,提高了探测的实时性和准确性,以及对移动机器人控制的鲁棒性.仿真和实验的结果都验证了该系统的可靠性和有效性.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

设计了一种基于多微处理器的智能超声探测系统。该系统采用由上位工作模式控制单元和下位智能超声传感器阵列组成的分布式结构。每个超声传感器均由独立的微处理器控制,并完成实时数据处理、抗干扰处理、故障报警以及数据通信等功能。上位控制单元根据移动机器人的运动状态采用不同的控制策略,使下位传感器阵列分组并行工作,提高了探测系统的实时性;下位传感器采用"阈值比较法"、"改进型递推均值滤波"算法和模糊信息处理技术,提高了探测系统的准确性、可靠性。将该探测系统安装于RIRA-II移动机器人上,进行了基于主动视觉和超声信息的运动目标跟踪实验,实验表明超声探测系统运行可靠、稳定。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

传统的火灾检测方法一般采用感烟、感温、感光探测器等进行探测。本文提出了一种嵌入式基于图像视觉特征的火灾检测方法,以TI公司的数字多媒体处理器TMS320DM642为核心,设计实现智能前端火灾探测与自动报警系统。通过DM642对视频图像进行采集并结合相应的智能图像处理与模式识别算法,对森林火险进行实时监控。实验结果表明,该系统比传统系统更进一步减少了误报率且具有响应快、监控范围广等优点。