73 resultados para Al Alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under optimized operating parameters, a hard and wear resistant ( Ti,Al)N film is prepared on a normalized T8 carbon tool steel substrate by using pulsed high energy density plasma technique. Microstructure and composition of the film are analysed by x-ray diffraction, x-ray photoelectron spectroscopy, Auger electron spectroscopy and scanning electron microscopy. Hardness profile and tribological properties of the film are tested with nano-indenter and ring-on-ring wear tester, respectively. The tested results show that the microstructure of the film is dense and uniform and is mainly composed of ( Ti,Al)N and AlN hard phases. A wide transition interface exists between the film and the normalized T8 carbon tool steel substrate. Thickness of the film is about 1000 nm and mean hardness value of the film is about 26GPa. Under dry sliding wear test conditions, relative wear resistance of the ( Ti,Al)N film is approximately 9 times higher than that of the hardened T8 carbon tool steel reference sample. Meanwhile, the ( Ti,Al)N film has low and stable friction coefficient compared with the hardened T8 carbon tool steel reference sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigations made by the authors and collaborators into the microstructural aspects of adiabatic shear localization are critically reviewed. The materials analyzed are low-carbon steels, 304 stainless steel, monocrystalline Fe-Ni-Cr, Ti and its alloys, Al-Li alloys, Zircaloy, copper, and Al/SiCp composites. The principal findings are the following: (a) there is a strain-rate-dependent critical strain for the development of shear bands; (b) deformed bands and white-etching bands correspond to different stages of deformation; (c) different slip activities occur in different stages of band development; (d) grain refinement and amorphization occur in shear bands; (e) loss of stress-carrying capability is more closely associated with microdefects rather than with localization of strain; (f) both crystalline rotation and slip play important roles; and (g) band development and band structures are material dependent. Additionally, avenues for new research directions are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anodic bonding of Pyrex glass/Al/Si is an important bonding technique in micro/nanoelectromechanical systems (MEMS/NEMS) industry. The anodic bonding of Pyrex 7740 glass/Aluminum film/Silicon is completed at the temperature from 300 degrees C to 375 degrees C with a bonding voltage between 150 V and 450 V. The fractal patterns are formed in the intermediate Al thin film. This pattern has the fractal dimension of the typical two-dimensional diffusion-limited aggregation (2D DLA) process, and the fractal dimension is around 1.7. The fractal patterns consist of Al and Si crystalline grains, and their occurrences are due to the limited diffusion, aggregation, and crystallization of Si and Al atoms in the intermediate Al layers. The formation of the fractal pattern is helpful to enhance the bonding strength between the Pyrex 7740 glass and the aluminum thin film coated on the crystal silicon substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peel test measurements and simulations of the interfacial mechanical parameters for the Al/Epoxy/Al2O3 system are performed in the present investigation. A series of Al film thicknesses between 20 and 250 microns and three peel angles of 90, 135 and 180 degrees are considered. Two types of epoxy adhesives are adopted to obtain both strong and weak interface adhesions. A finite element model with cohesive zone elements is used to identify the interfacial parameters and simulate the peel test process. By simulating and recording normal stress near the crack tip, the separation strength is obtained. Furthermore, the cohesive energy is identified by comparing the simulated steady-state peel force and the experimental result. It is found from the research that both the cohesive energy and the separation strength can be taken as the intrinsic interfacial parameters which are dependent on the thickness of the adhesive layer and independent of the film thickness and peel angle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructure characterization is important for controlling the quality of laser welding. In the present work, a detailed microstructure characterization by transmission electron microscopy was carried out on the laser welding cast Ni-based superalloy K418 turbo disk and alloy steel 42CrMo shaft and an unambiguous identification of phases in the weldment was accomplished. It was found that there are gamma-FeCrNiC austenite solid solution dendrites as the matrix, (Nb, Ti) C type MC carbides, fine and dispersed Ni-3 Al gamma' phase as well as Laves particles in the interdendritic region of the seam zone. A brief discussion was given for their existence based on both kinetic and thermodynamic principles. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation and mechanical properties of amorphous copper are studied using molecular dynamics simulation. The simulations of tension and shearing show that more pronounced plasticity is found under shearing, compared to tension. Apparent strain hardening and strain rate effect are observed. Interestingly, the variations of number density of atoms during deformation indicate free volume creation, especially under higher strain rate. In particular, it is found that shear induced dilatation does appear in the amorphous metal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The NiAl intermetallic layers and NiAl matrix composite layers with TiC particulate reinforcement were successfully synthesized by laser cladding with coaxial powder feeding of Ni/Al clad powder and Ni/Al + TiC powder mixture, respectively. With optimized processing parameters and powder mixture compositions, the synthesized layers were free of cracks and metallurgical bond with the substrate. The microstructure of the laser-synthesized layers was composed of 6-NiAl phase and a few gamma phases for NiAl intermetallic; unmelted TiC, dispersive fine precipitated TiC particles and refined beta-NiAl phase matrix for TiC reinforced NiAl intermetallic composite. The average microhardness was 355 HV0.1 and 538 HV0.1, respectively. Laser synthesizing and direct metal depositing offer promising approaches for producing NiAl intermetallic and TiC-reinforced NiAl metal matrix composite coatings and for fabricating NiAl intermetallic bulk structure. (C) 2004 Laser Institute of America.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quasicrystalline phase with different volume fraction were formed by isothermally annealing the as-castZr(62)Al(9.5)Ni(9.5)Cu(14)Nb(5) bulk metallic glass at 723 K for different times. The effects of quasicrystals on the deformation behavior of the materials were studied by nanoindentation and compression test. It revealed that the alloys with homogeneous amorphous structure exhibit pronounced flow serrations during the nanoindentation loading, while no obvious flow serration is observed for the sample with quasicrystals more than 10 vol.%. However, further compression tests confirm that the no-serrated flows are formed due to different reasons. For annealed samples containing quasicrystals less than 35 vol.%, continuous plastic deformation occurs due to propagation of multiple shear bands. While the disappearance of serrated flow cannot be explained by the generation of multiple shear bands for samples containing quasicrystals more than 35 vol.%, which will fracture with a totally different fracture mode, namely, dimple fracture mode under loading instead of shear fracture mode. (c) 2005 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulk nanostructured metals are often formed via severe plastic deformation (SPD). The dislocations generated during SPD evolve into boundaries to decompose the grains. Vacancies are also produced in large numbers during SPD, but have received much less attention. Using transmission electron microscopy, here we demonstrate a high density of unusually large vacancy Frank loops in SPD-processed Al. They are shown to impede moving dislocations and should be a contributor to strength. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Previous experiments on nanocrystalline Ni were conducted under quasistatic strain rates (similar to 3x10(-3)/s), which are much lower than that used in typical molecular dynamics simulations (>3x10(7)/s), thus making direct comparison of modeling and experiments very difficult. In this study, the split Hopkinson bar tests revealed that nanocrystalline Ni prefers twinning to extended partials, especially under higher strain rates (10(3)/s). These observations contradict some reported molecular dynamics simulation results, where only extended partials, but no twins, were observed. The accuracy of the generalized planar fault energies is only partially responsible, but cannot fully account for such a difference. (C) 2007 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文讨论了负超载对Al-2024铝合金材料疲劳裂纹扩展的影响,试验发现在大量负超载循环周次之后也有裂纹停滞现象发生。这种停滞现象的产生与剪切唇的形成有关。本文发现负超载期间的剪切唇(简称剪切唇Ⅰ)和负超载之后的剪切唇(简称剪切唇Ⅱ)对疲劳裂纹扩展速率影响的程度不同。从裂纹闭合的观点建立了负超载对疲劳裂纹扩展影响的计算模型。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

本文借助光学显微镜、扫描电镜分析研究了水雾化、氮气雾化al粉和超声氩气雾化Al-Li合金粉爆炸烧结体的显微结构, 结果表明: 只有AlAl合金粉的表面氧化膜厚度小于30nm时, 才可以得到性质优异的爆炸烧结体。