64 resultados para Agents Map
Resumo:
Preliminary genetic linkage maps were constructed for the Pacific abalone (Haliotis discus hannai Ino) using amplified fragment length polymorphism (AFLP), randomly amplified polymorphic DNA (RAPD), and microsatellite markers segregating in a F, family. Nine microsatellite loci, 41 RAPD, and 2688 AFLP markers were genotyped in the parents and 86 progeny of the mapping family. Among the 2738 markers, 384 (including 365 AFLP markers, 10 RAPD markers, and 9 microsatellite loci) were polymorphic and segregated in one or both parents: 241 in the female and 146 in the male. The majority of these markers, 232 in the female and 134 in the male, segregated according to the expected 1:1 Mendelian ratio (alpha = 0.05). Two genetic linkage maps were constructed using markers segregating in the female or the male parent. The female framework map consisted of 119 markers in 22 linkage groups, covering 1773.6 cM with an average intermarker space of 18.3 cM. The male framework map contained 94 markers in 19 linkage groups, spanning 1365.9 cM with an average intermarker space of 18.2 cM. The sex determination locus was mapped to the male map but not to the female map, suggesting a XY-male determination mechanism. Distorted markers showing excess of homozygotes were mapped in clusters, probably because of their linkage to a gene that is incompatible between two parental populations.
Resumo:
Eighteen novel triazole compounds containing thioamide were designed and synthesized. Their structures were confirmed by elemental analysis, H-1 NMR, IR, and MS. The title compounds exhibited certain antifungal activity. And the geometry structures of the title compounds were optimized by means of the density functional theory (DFT) method at B3LYP/6-31G* level. The quantitative structure-activity relationship (QSAR) of the title compounds was systematically investigated. A correlative equation between FA and DELH, V was well established by using the multiple linear regression (MLR). (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
In this study, a novel sol-gel method is used to synthesize amorphous silica-alumina materials with a narrow mesoporous distribution and various Si/Al molar ratios without using any templates and pore-regulating agents. During the preparation procedure, only inexpensive inorganic salts were used as raw materials, instead of expensive and harmful alkoxides. The precursor sol was dried at room temperature in a vacuum box kept at 60 mmHg until it began to form the gel. The results of a nitrogen sorption experiment indicate that the synthesized materials with different Si/Al molar ratios have similar mesoporous distributions (within 2-12 nm). Moreover, it was found that the material's pore size distribution remains at a similar value during the heat treatment from room temperature to 550 degreesC. On the basis of the nitrogen sorption, TEM, and AFM characterization results, a formation mechanism of mesopores which accounts for the experimental data is also suggested. This suggested mechanism involves rearrangement of the primary particles during the drying process to form the precursors of the similarly sized mesopores. The synthesized materials were characterized by XRD, thermal analysis (TG/DTA), Al-27 and Si-29 MAS NMR spectroscopy, SEM, TEM, and AFM. The results of Al-27 and 29Si MAS NMR indicate that the distribution of silicon and aluminum in the synthesized materials is more uniform and homogeneous than that in the mixed oxides prepared via the traditional sol-gel method even at high alumina contents. The type and density of the acid sites were studied using pyridine adsorption-desorption FTIR spectroscopy. It was shown that the acidity of the synthesized materials is higher than that of the silica-alumina materials prepared by conventional methods.
Resumo:
Photodissociation dynamics of ketene following excitation at 208.59 and 213.24 nm have been investigated using the velocity map ion-imaging method. Both the angular distribution and translational energy distribution of the CO products at different rotational and vibrational states have been obtained. No significant difference in the translational energy distributions for different CO rotational state products has been observed at both excitation wavelengths. The anisotropy parameter beta is, however, noticeably different for different CO rotational state products at both excitation wavelengths. For lower rotational states of the CO product, beta is smaller than zero, while beta is larger than zero for CO at higher rotational states. The observed rotational dependence of angular anisotropy is interpreted as the dynamical influence of a peculiar conical intersection between the B-1(1) excited state and (1)A(2) state along the C-S-I coordinate.