107 resultados para 434
Resumo:
This study is aimed at observing the apoptosis and Bcl-2/Bax gene expression of mammalian cells following heavy-ion and X-ray irradiations. Exponentially growing human hepatoma SMMC-7721 cells cultured in vitro were irradiated with a C-12 ion beam of 50 MeV/u (corresponding to a LET value of 44.56 keV/mu m) from Heavy Ion Research Facility in Lanzhou (HIRFL) at doses varying from 0 to 3 Gy. The X-ray irradiation (8 MV) was performed in the therapy unit of the General Hospital of the Lanzhou Military Area. Survival fractions of irradiated cells at various doses were measured by means of MTT assay. Apoptotic cells after irradiation were analyzed with fluorescence microscope and flow cytometer (FCM). Immuno-histological assay were applied to detect the expression of Bcl-2/Bax genes in the irradiated cells. The survival fraction of SMMC-7721 cells decreased gradually (vs. control p<0.05) with increasing the dose of the carbon ion beam more obviously than X-ray irradiation, and the carbon ion irradiation efficiently induced cell apoptosis and significantly promoted the expression of Bax gene while Bcl-2 gene expression was restrained. High-LET heavy ion beam would induce cell apoptosis effectively than low-LET X-ray, and the apoptosis rate is correlated with the transcription of Bcl-2/Bax and the ratio of Bcl-2/Bax in human hepatoma SMMC-7721 cells after irradiation to heavy ion beam.
Resumo:
By means of the improved quantum molecular dynamics model, the incident energy dependent dynamical fusion potential barriers for heavy nucleus reaction systems are investigated. It is found that with decrease of incident energy the lowest dynamic barrier is obtained which approaches to the adiabatic static barrier and with increase of the incident energy the dynamic barrier goes up to the diabatic static barrier. Based on the dynamical study a microscopic understanding of the extra-push in fusion reactions of heavy systems and a new explanation of tunneling process for the fusion at the incident energy below the static and above the lowest dynamic barrier are presented. In order to understand the energy dependence of the dynamical barrier we also pay a great attention to study the neck formation and shape deformation during the dynamic lowering of the barrier.
Resumo:
近地表面的多年冻土是陆地生态系统重要的组成部分,其研究是生态、水文和工程建设研究者关心的重要议题。气候是多年冻土重要的影响因子,国内外研究中,与气候变化相结合的多年冻土研究是当前研究的重要方面;同时,多年冻土的水文学、生态学意义研究也在广泛开展。我国的多年冻土研究一直与寒区经济建设和开发紧密联系,在冻土分布、类型、温度、冻土退化及冻土区开发利用等方面取得了丰硕的成果。未来还应注重高分辨率冻土分布制图、融深变化的研究,并建立长期的多年冻土变化监测机制,以便更好地研究气候变化下,陆地生态系统对全球变化的响应与反馈。
Resumo:
论文在对黄土高原土壤水分资源的赋存条件和土壤水分循环与平衡分析基础上, 讨论了人工林系统的土壤水文效应、 土壤干燥化──土壤干层的形成与植树造林问题。
Resumo:
樟子松由于适应性强而被广泛引种到我国主要沙区.通过采用ChampanRichards生长模型,模拟了红花尔基和章古台两地樟子松的胸径、树高和材积的生长过程.天然樟子松林速生期持续时间长,数量成熟年龄为100a,章古台人工林速生期持续时间短,数量成熟龄为46a
Resumo:
Spatial and temporal distribution of vegetation net primary production (NPP) in China was studied using three light-use efficiency models (CASA, GLOPEM and GEOLUE) and two mechanistic ecological process models (CEVSA, GEOPRO). Based on spatial and temporal analysis (e.g. monthly, seasonally and annually) of simulated results from ecological process mechanism models of CASA, GLOPEM and CEVSA, the following conclusions could be made: (1) during the last 20 years, NPP change in China followed closely the seasonal change of climate affected by monsoon with an overall trend of increasing; (2) simulated average seasonal NPP was: 0.571 +/- 0.2 GtC in spring, 1.573 +/- 0.4 GtC in summer, 0.6 +/- 0.2 GtC in autumn, and 0.12 +/- 0.1 GtC in winter. Average annual NPP in China was 2.864 +/- 1 GtC. All the five models were able to simulate seasonal and spatial features of biomass for different ecological types in China. This paper provides a baseline for China's total biomass production. It also offers a means of estimating the NPP change due to afforestation, reforestation, conservation and other human activities and could aid people in using for-mentioned carbon sinks to fulfill China's commitment of reducing greenhouse gases.
Resumo:
Real-space self-consistent field theory (SCFT) is employed to study the effect of solvent molecular size on the self-assembly of amphiphilic diblock copolymer in selective solvent. The phase diagrams in wide ranges of interaction parameters and solvent molecular size were obtained in present study. The results indicate that the solvent molecular size is a key factor that determines the self-assembly of amphiphilic diblock copolymer. The self-assembled morphology changes from circle-like micelle to line-like micelle, then to loop-like micelle by decreasing the solvent molecular size in a wide range of solvent selectivity. We analyze and discuss this change in terms of the solvent solubility and the entropy contribution.
Resumo:
A family of supramolecular polymers was prepared via Cd2+-directed self-assembly polymerization of his (2,2':6',2 ''-terpyridine)-based ligand monomers, using oligofluorenes and triphenylamine as bridges under mild conditions. The polymers were fully characterized using thermogravimetric analysis, inherent viscosity, electrochemical measurements, UV-visible spectroscopy, photoluminescence (PL) and electroluminescence (EL). Polymers with oligofluorenes as spacers exhibited blue emission (434-442 nm) in dimethyl acetamide (DMAc) solution, while polymers with triphenylamine as spacer presented an emission peak at 494 nn in DMAc solution. Complexation polymerization of bis(2,2':6',2 ''-terpyridine)-based ligand monomers with cadmium(II) improved fluorescence quantum yields dramatically, and the film PL quantum yields of these polymers were about 0.38-0.54. Single-layer light-emitting diodes were fabricated with the configuration indium tin oxide (ITO)/polymer/Ca/Al; the EL showed green emission and the onset voltages of the devices were 8-11 V.
Resumo:
In the present paper, the adsorption of thulium(Ill) from chloride medium on an extraction resin containing bis(2,4,4-trimethylpentyl) monothiophosphinic acid (CL302, HL) has been studied. The results show that 1.5 h is enough for the adsorption equilibrium. The distribution coefficients are determined as a function of the acidity of the aqueous phase and the data are analyzed both graphically and numerically. The plots of log D versus pH give a straight line with a slope of about 3, indicating that 3 protons are released in the adsorption reaction of thulium(III). The content of Cyanex302 in the resin is determined to be 48.21%. The total amount of Tm3+ adsorbed up to resin saturation is determined to be 82.46 mg Tm3+/g resin. Therefore, the sorption reactions of Tm3+ from chloride medium with CL302 can be described as: Tm3+ + 3HL((r)) <----> TmL3(r) + 3H(+) The Freundlich's isothermal adsorption equation is also determined as: log Q = 0.73 log C + 3.05 The amounts (Q) of Tm3+ adsorbed with the resin have been studied at different temperatures (15-40degreesC) at fixed concentrations of Tm3+, amounts of extraction resin, ion strength and acidities in the aqueous phase.
Resumo:
In this paper, BPO4 and Ba2+-doped BPO4 powder samples were prepared by the sol-gel process using glycerol and poly(ethylene glycol) as additives. The structure and optical properties of the resulting samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FESEM), diffuse reflection spectra, photoluminescence (PL) excitation and emission spectra, quantum yield, kinetic decay, and electron paramagnetic resonance (EPR), respectively. It was found that the undoped BPO4 showed a weak purple blue emission (409 nm, lifetime 6.4 ns) due to the carbon impurities involved in the host lattice. Doping Ba2+ into BPO4 resulted in oxygen-related defects as additional emission centers which enhanced the emission intensity greatly (> 10x) and shifted the emission to a longer-wavelength region (lambda(max) = 434 nm; chromaticity coordinates: x = 0.174, y = 0. 187) with a bluish-white color. The highest emission intensity was obtained ;when doping 6 mol % Ba2+ in BPO4, which has a quantum yield as high as 31%. The luminescent mechanisms of BPO4 and Ba2+-doped BPO4 were discussed in detail according to the existing models for silica-based materials.