234 resultados para 24-238
Resumo:
Direct synthesis of alcohols from CO and H2O was investigated using TiO2 catalyst. MeOH (about 24 mg g(-1) h(-1)) and EtOH (about 8 mg g(-1) h(-1)) could be produced under the reaction conditions of T= 573 K, P= 0.5 MPa, CO flow rate of 30 ml min(-1) and CO/H2O = 3/2 during the period of 12 to 44 h time-on-stream. Compared with PbO, TiO2 could preserve stable catalytic activity during a long time of reaction. For the same catalyst TiO2, the reaction performance of alkali carbonates increased with their solubility (K2CO3>Na2CO3>Li2CO3). The corresponding catalytic activity was found to increase with the alkalescence of solvent. The formation mechanism of alcohols was proposed as well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The paper presents a theoretical study of the dynamics of the H + HCl system on the potential energy surface (PES) of Bian and Werner (Bian, W.; Werner, H. -J., J. Chem. Phys. 2000, 112, 220). A time-dependent wave packet approach was employed to calculate state-to-state reaction probabilities for the exchanged and abstraction channels. The most recent PES for the system has been used in the calculations. Reaction probabilities have also been calculated for several values of the total angular momentum J > 0. Those have then been used to estimate cross sections and rate constants for both channels. The calculated cross sections can be compared with the results of previous quasiclassical trajectory calculations and reaction dynamics experimental on the abstraction channel. In addition, the calculated rate constants are in the reasonably good agreement with experimental measurement.
Resumo:
A series of heteropolyphosphatotungstate catalysts with different W/P ratio were prepared by different means. P-31 MAS NMR spectra show every heteropolyphosphatotungstate contains several species with different W/P ratio. Combined with propylene epoxidation results, it is shown that the band at chemical shift ca. delta = 5 ppm maybe corresponds to a catalyst precursor which can be the most efficiently converted to the structure {PO4 [WO(O-2)(2)](4)}(3-). Characterization results of ICP show, the catalysts with low W/P ratio show a good reactivity for propylene epoxidation. (C) 2004 Elsevier B.V. All rights reserved.