177 resultados para 1181 Ecology, evolutionary biology
Resumo:
As an endangered animal group, musk deer (genus Moschus) are not only a great concern of wildlife conservation, but also of special interest to evolutionary studies due to long-standing arguments on the taxonomic and phylogenetic associations in this group. Using museum samples, we sequenced complete mitochondrial cytochrome b genes (1140 bp) of all suggested species of musk deer in order to reconstruct their phylogenetic history through molecular information. Our results showed that the cytochrome b gene tree is rather robust and concurred for all the algorithms employed (parsimony, maximum likelihood, and distance methods). Further, the relative rate test indicated a constant sequence substitution rate among all the species, permitting the dating of divergence events by molecular clock. According to the molecular topology, M. moschiferus branched off the earliest from a common ancestor of musk deer (about 700,000 years ago); then followed the bifurcation forming the M. berezouskii lineage and the lineage clustering M. fuscus, M. chrysogaster, and M. leucogaster (around 370,000 years before present), interestingly the most recent speciation event in musk deer happened rather recently (140,000 years ago), which might have resulted from the diversified habitats and geographic barriers in southwest China caused by gigantic movements of the Qinghai-Tibetan Plateau in history. Combining the data of current distributions, fossil records, and molecular data of this study, we suggest that the historical dispersion of musk deer might be from north to south in China. Additionally, in our further analyses involving other pecora species, musk deer was strongly supported as a monophyletic group and a valid family in Artiodactyla, closely related to Cervidae. (C) 1999 Academic Press.
Resumo:
The phylogenetic relationships among worldwide species of genus Ochotona were investigated by sequencing mitochondrial cytochrome b and ND4 genes. Parsimony and neighbor-joining analyses of the sequence data yielded congruent results that strongly indicated three major clusters: the shrub-steppe group, the northern group, and the mountain group. The subgeneric classification of Ochotona species needs to be revised because each of the two subgenera in the present classification contains species from the mountain group. To solve this taxonomic problem so that each taxon is monophyletic, i.e., represents a natural clade, Ochotona could be divided into three subgenera, one for the shrub-steppe species, a second for the northern species, and a third for the mountain species. The inferred tree suggests that the differentiation of this genus in the Palearctic Region was closely related to the gradual uplifting of the Tibet (Qinghai-Xizang) Plateau, as hypothesized previously, and that vicariance might have played a major role in the differentiation of this genus on the Plateau, On the other hand, the North American species, O. princeps, is most likely a dispersal event, which might have happened during the Pliocene through the opening of the Bering Strait. The phylogenetic relationships within the shrub-steppe group are worth noting in that instead of a monophyletic shrub-dwelling group, shrub dwellers and steppe dwellers are intermingled with each other. Moreover, the sequence divergence within the sister tars of one steppe? dweller and one shrub dweller is very low. These findings support the hypothesis that pikes have entered the steppe environment several times and that morphological similarities within steppe dwellers were due to convergent evolution. (C) 2000 Academic Press.
Resumo:
The evolutionarily conserved Nkx6 family transcription factors play important roles in the patterning of the central nervous system (CNS) and pancreas in vertebrates. In this study, we describe the cloning and expression patterns of the three Nkx6 family
Resumo:
Regulation of neuronal gene expression is critical to nervous system development. REST (RE1-silencing transcription factor) regulates neuronal gene expression through interacting with a group of corepressor proteins including REST corepressors (RCOR). Here we show that Xenopus RCOR2 is predominantly expressed in the developing nervous system. Through a yeast two-hybrid screen, we isolated Xenopus ZMYND8 (Zinc finger and MYND domain containing 8) as an XRCOR2 interacting factor. XRCOR2 and XZMYND8 bind each other in co-immunoprecipitation assays and both of them can function as transcriptional repressors. XZMYND8 is co-expressed with XRCOR2 in the nervous system and overexpression of XZMYND8 inhibits neural differentiation in Xenopus embryos. These data reveal a RCOR2/ZMYND8 complex which might be involved in the regulation of neural differentiation. (C) 2010 Elsevier Inc. All rights reserved.
DIFFERENT RATES OF MITOCHONDRIAL-DNA SEQUENCE EVOLUTION IN KIRK DIK-DIK (MADOQUA-KIRKII) POPULATIONS
Resumo:
We have investigated evolutionary rates of the mitochondrial genome among individuals of Madoqua kirkii using the relative rate test. Our results demonstrate that individuals of two chromosome races, East African cytotype A and Southwest African cytotype D, evolve about 2.3 times faster than East African cytotype B. Cytogenetic changes, DNA repair efficiency, mutagens, and more likely, hitherto unrecognized factors will account for the rate difference we have observed. Our results suggest additional caution when using molecular clocks in the estimation of divergence time, even within lineages of closely related taxa. Rate heterogeneity in microevolutionary timescales represents a potentially important aspect of basic evolutionary processes and may provide additional insights into factors which affect genome evolution. (C) 1995 Academic Press, Inc.
Resumo:
The sequences of the mitochondrial ND4 gene (1339 bp) and the ND4L gene (290 bp) were determined for all the 14 extant taxa of the Drosophila nasuta subgroup The average A + T content of ND4 genes is 76.5% and that of ND4L genes is 83.5%. A total of 114 variable sites were scored. The ND4 gene sequence divergence ranged from 0 to 5.4% within the subgroup. The substitution rate of the ND4 gene is about 1.25% per million years. The base substitution of the genesis strongly transition biased. Neighbor-joining and parsimony were used to construct a phylogeny based on the resultant sequence data set. According to these trees, five, distinct mtDNA clades can be identified. D. niveifrons represents the most diverged lineage. D, sulfurigaster bilimbata and D. kepulauana form two independent lineages. The other two clades are the kohkoa complex and the albomicans complex. The Kohkoa complex consists of D. sulfurigaster sulfurigaster, D. pulaua, D. kohkoa, and Taxon-F. The albomicans complex can be divided into two groups: D. nasuta, D. sulfurigaster neonasuta, D. sulfurigaster albostrigata, and D.. albomicans from Chiangmai form one group; and D. pallidifrons, Taxon-I, Taxon-J, and D. albomicans from China form the other group. High genetic differentiation was found among D. albomicans populations. Based on our phylogenetic results, we hypothesize that D. niveifrons diverged first from the D, nasuta subgroup in Papua New Guinea about 3.5 Mya. The ancestral population spread to the north and when it reached Borneo, it diversified sequentially into the kohkoa complex, D. s. bilimbata, and D. kepulauana. About 1 Mya, another radiation occurred when the ancestral populations reached the Indo-China Peninsula, forming the albomicans complex. Discrepancy between morphological groupings and phylogenetic results suggests that the male morphological traits may not be orthologous. (C) 1999 Academic Press.
Resumo:
In this study, the region corresponding to the Thr-Gly region of the period (per) gene in the Drosophila nasuta subgroup of species was sequenced. The results showed, that this region was highly conserved in the D. nasuta subgroup. There were only nine variable sites found in this 300-bp-long region, all located in two small regions highly variable among Drosophila species. No length variation was observed either within this subgroup or in the Yunnan (YN) population of D. albomicans. The deduced amino acid sequences were identical for all 14 taxa in the D. nasuta subgroup, and a stretch of alternating Thr-Gly pairs was not observed in this subgroup. A phylogenetic tree was constructed. The clustering of some species was in general agreement with previous works, but it also raised some question on the phylogenetic relationship between the nasuta species. The data did not implicate the Thr-Gly region playing a role in behavioral isolation in this subgroup of Drosophila.
Resumo:
The chemokine receptor CCR5 can serve as a coreceptor for M-tropic HIV-1 infection and both M-tropic and T-tropic SIV infection. We sequenced the entire CCR5 gene from 10 nonhuman primates: Pongo pygmaeus, Hylobates leucogenys, Trachypithecus francoisi, Trachypithecus phayrei, Pygathrix nemaeus, Rhinopithecus roxellanae, Rhinopithecus bieti, Rhinopithecus avunculus, Macaca assamensis, and Macaca arctoides. When compared with CCR5 sequences from humans and other primates, our results demonstrate that:(1) nucleotide and amino acid sequences of CCR5 among primates are highly homologous, with variations slightly concentrated on the amino and carboxyl termini; and (2) site Asp13, which is critical for CD4-independent binding of SIV gp120 to Macaca mulatta CCR5, was also present in all other nonhuman primates tested here, suggesting that those nonhuman primate CCR5s might also bind SIV gp120 without the presence of CD4. The topologies of CCR5 gene trees constructed here conflict with the putative opinion that the snub-nosed langurs compose a monophyletic group, suggesting that the CCR5 gene may not be a good genetic marker for low-level phylogenetic analysis. The evolutionary rate of CCR5 was calculated, and our results suggest a slowdown in primates after they diverged from rodents. The synonymous mutation rate of CCR5 in primates is constant, about 1.1 x 10(-9) synonymous mutations per site per year. Comparisons of K-a and K-s suggest that the CCR5 genes have undergone negative or purifying selection. K-a/K-s ratios from cercopithecines and colobines are significantly different, implying that selective pressures have played different roles in the two lineages.
Resumo:
Microsatellites and mitochondrial DNA sequences were studied for the two subspecies of orangutans (Pongo pygmaeus), which are located in Borneo (P. p, pygmaeus) and Sumatra (P. p. abelii), respectively. Both subspecies possess marked genetic diversity. Ge
Resumo:
We surveyed mitochondrial DNA (mtDNA) sequence variation in the subfamily Xenocyprinae from China and used these data to estimate intraspecific, interspecific, and intergeneric phylogeny and assess biogeographic scenarios underlying the geographic structu
Resumo:
Three digestion trials were conducted to quantify aspects of digestive physiology in the Yunnan snub-nosed monkey Rhinopithecus bieti, a foregut fermenter that feeds primarily on lichens. Mean retention time (MRT, the average time plastic markers spent in
Resumo:
The origin and demographic history of the ethnic populations of China have not been clearly resolved. In this study, we examined the hypervariable segment I sequences (HVSI) of the mitochondrial DNA control region in 372 individuals from nine Chinese popu
Resumo:
Sequences of the mitochondrial cytochrome b (1140 bp) and nuclear IRBP (1152 bp) genes were used to assess the evolutionary history of Apodemus, using the complete set of Asian species. Our results indicate that speciation in Asia involved three radiations, which supports an earlier study. The initial radiation yielded A. argenteus (Japanese endemic), A. gurkha (Nepalese endemic), and the ancestral lineage of the remaining Asian species. This lineage subsequently diverged into four groups: agrarius-chevrieri (agrarius group), draco-latronum-semotus (draco group), A. peninsulae, and A. speciosus (Japanese endemic). The final step consisted of divergence within two species groups as a consequence of the geography of the Yunnan-Guizhou plateau and Taiwan. The ecological ability of two Apodemus-species to inhabit one locality via niche partitioning likely drove the second radiation and shaped the basic geographical pattern seen today: A. argenteus and A. speciosus in Japan, A. agrarius and A. peninsulae in northern China, and the A. agrarius and A. draco groups in southern China. The three radiations are estimated to have occurred 7.5, 6.6, and 1.8-0.8 Mya respectively, using the IRBP clock, based on rat-mouse divergence 12 Mya. (C) 2003 The Linnean Society of London.