757 resultados para Ir catalysts


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic performance of silver-modified ZSM-5 catalysts in the selectively catalytic reduction (SCR) of NOx with methane was investigated. NO was selectively reduced by CH4 to N-2 in the presence of excess O-2, and the catalytic activity depended on both the activation of CH4 and the adsorption properties of NOx. Silver incorporated in ZSM-5 zeolite activated CH4 at low temperatures and lowered the "light-off" temperature for the CH4-SCR of NOx. Temperature-programmed (TP) spectroscopy studies depicted that surface nitrosyl species directly decomposed to N-2 in the absence of O-2. CH4 could not effectively reduce surface nitrosyl species, but might facilitate the direct decomposition of NO through the removal of surface oxygen. Surface nitrates were formed in NO and O-2 coexisting system and could be effectively reduced by CR4 to nitrogen. The priority of surface nitrates to O-2 in the reaction with CH4 clearly demonstrated that CH4 selectively and preferentially reduced the surface nitrate species to N-2 in the excess of oxygen. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propylene epoxidation by air was carried out on NaCl-modified silver (NaCl/Ag) catalysts, and the catalysts were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The effects of NaCl loadings, propylene to oxygen ratio, and the reaction time on the catalytic performance were investigated. It was found that the addition of NaCl to silver significantly increases the propylene oxide (PO) selectivity. The PO yield has a maximum when the NaCl loading is about 10 wt.%. Also 12.4% conversion of propylene and 31.6% selectivity to PO are obtained on the NaCl/Ag (10 wt.%) catalyst at 350 degreesC, space velocity 1.8 x 10(4) h(-1) and C3H6:O-2 = 1:2. XPS and XRD characterizations show that AgCl formed on the silver catalyst was favorable to propylene epoxidation. A compound with highly oxidized Ag ion was also found, which may be effective for the reaction. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adsorption and oxidation of chlorobenzene on Al(2)O(3), TiO(2)-Al(2)O(3), and MnO(x)/TiO(2)-Al(2)O(3) have been studied by in situ Fourier transform infrared (FT-IR) spectroscopy. At room temperature, chlorobenzene is only physisorbed on Al(2)O(3), TiO(2)-Al(2)O(3), and MnO(x)/TiO(2)-Al(2)O(3), and gives the same IR spectrum as that for liquid-phase chlorobenzene. On Al(2)O(3) no further interaction and reaction take place with treatment, at higher temperatures (up to 773 K), while phenolates are observed for TiO(2)-Al(2)O(3) and MnO(x)/TiO(2)-Al(2)O(3) at 773 K. When the adsorbed chlorobenzene coexists with oxygen, formates are detected for Al(2)O(3), while acetates are additionally observed for TiO(2-)Al(2)O(3) above 573 K. For MnO(x)/TiO(2-)Al(2)O(3), maleates are present at 573 And 673 K, while formates and acetates develop at 473 and 573 K. Almost all IR bands due to formates, acetates, and maleates disappear at 773 K, indicating that these oxygen-containing species are potential intermediates for the total oxidation of chlorobenzene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel graphitic-nanofilament-(GNF-) supported Ru-Ba catalyst is prepared and used in ammonia synthesis reaction. The Ru-Ba/GNFs catalyst shows remarkably high activity and stability for ammonia synthesis, which can be attributed to high purity and graphitization of GNFs with unique structure. TEM micrographs of the Ru-Ba/GNFs catalysts show that Ru metal particles uniformly disperse on the outer wall of GNFs, and the particles become bigger than that before ammonia synthesis reaction after 50 h of operation at 500degreesC and 7.0 MPa, probably due to the Ru crystals covered by promoter and support materials and/or sintering of Ru crystals. (C) 2002 Elsevier Science (USA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceria catalysts were found active and selective to the oxidehydrogenation of ethane (ODE) with CO2 and the actual contribution for C2H4 formation from heterogeneous catalysis was 75-55% in the range 953-993 K. The presence of calcium ions in solid solution in the ceria crystalline network increased significatively the selectivity to ethene and the efficiency of CO2 as oxidant in the heterogeneous reaction. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two series of sulfided Ni or Co promoted Mo/alumina catalysts, having different Ni or Co loadings, were characterized by their activities for the transformation of cyclopentanone into cyclopentanethiol (flow reactor, 220 degrees C, atmospheric pressure) and for the hydrodesulfurization of dibenzothiophene (flow reactor, 340 degrees C, 3 MPa hydrogen pressure). The addition of the promoter increased significantly the activity of the Mo/alumina catalyst for both reactions, up to a maximum obtained with the catalysts having a (promoter)/(promoter+Mo) molar ratio equal to 0.3-0.4. This increase in activity was due in part to an increase in the hydrogenating properties of the Mo/alumina catalyst. However, an additional modification of the catalyst (basic and nucleophilic properties) must be considered to account for the spectacular effect of the promoter on the rate of the dibenzothiophene direct desulfurization reaction. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction behaviors of the supported platinum-iron catalysts and their comparison with supported iron catalysts were studied by TPR (temperature-programmed reduction)-in situ Fe-57 MBS (Mossbauer spectroscopy). The results indicated that the TPR processes of all Fe-containing catalysts were different from that of bulk alpha-Fe2O3. There were interactions between Pt, Fe and the gamma-Al2O3 or SiO2 support for the Pt-Fe/gamma-Al2O3 and Pt-Fe/SiO2 catalysts. All the iron-containing catalysts show that Fe3+ was highly dispersed on the support (gamma-Al2O3 and SiO2) before reduction. No Fe-0 was found in the reduction processes. The Fe3+ was reduced to Fe2+ in tetrahedral vacancy first for the reduction of the Pt-Fe/gamma-Al2O3 catalyst. No Fe2+ in octahedral vacancy was found in the reduction of the Pt-Fe/SiO2 catalyst. Adding Pt to Fe/support (gamma-Al2O3 or SiO2) could promote the reduction of the Fe species. (C) 1999 Elsevier Science B.V. All rights reserved.