119 resultados para water soluble cellulose hydrolysis product ethylmethylimidazolium sulfate
Resumo:
Hydrogenation of nitrobenzene can be catalyzed by the water-soluble catalyst PdCl2(TPPTS)(2) (TPPTS = tris(m-sulfonatophenyl)phosphine trisodium salt) under normal pressure at 65 degrees C in H2O/toluene biphasic solvent system. The exhibits higher catalytic activity and selectivity for the hydrogenation of aromatic nitrocompounds, compared with PdCl2(TPPTS)(2) or H2PtCl6 alone. The transmission electron micrographs demonstrate that the monometallic catalyst is composed of ultrafine palladium particles of almost uniform size while the particles of bimetallic catalyst are more widely distributed in size than those of the monometallic ones. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
We investigated the kinetics of hot liquid water (HLW) hydrolysis over a 60-min period using a self-designed setup. The reaction was performed within the range 160-220 °C, under reaction conditions of 4.0 MPa, a 1:20 solid:liquid ratio (g/mL), at 500 rpm stirring speed. Xylan was chosen as a model compound for hemicelluloses, and two kinds of agricultural wastes-rice straw and palm shell-were used as typical feedstocks representative of herbaceous and woody biomasses, respectively. The hydrolysis reactions for the three kinds of materials followed a first-order sequential kinetic model, and the hydrolysis activation energies were 65.58 kJ/mol for xylan, 68.76 kJ/mol for rice straw, and 95.19 kJ/mol for palm shell. The activation energies of sugar degradation were 147.21 kJ/mol for xylan, 47.08 kJ/mol for rice straw and 79.74 kJ/mol for palm shell. These differences may be due to differences in the composition and construction of the three kinds of materials. In order to reduce the decomposition of sugars, the hydrolysis time of biomasses such as rice straw and palm shell should be strictly controlled.
Resumo:
Enzymatic hydrolysis of cellulose was highly complex because of the unclear enzymatic mechanism and many factors that affect the heterogeneous system. Therefore, it is difficult to build a theoretical model to study cellulose hydrolysis by cellulase. Artificial neural network (ANN) was used to simulate and predict this enzymatic reaction and compared with the response surface model (RSM). The independent variables were cellulase amount X-1, substrate concentration X-2, and reaction time X-3, and the response variables were reducing sugar concentration Y-1 and transformation rate of the raw material Y-2. The experimental results showed that ANN was much more suitable for studying the kinetics of the enzymatic hydrolysis than RSM. During the simulation process, relative errors produced by the ANN model were apparently smaller than that by RSM except one and the central experimental points. During the prediction process, values produced by the ANN model were much closer to the experimental values than that produced by RSM. These showed that ANN is a persuasive tool that can be used for studying the kinetics of cellulose hydrolysis catalyzed by cellulase.
Resumo:
The solution of non-volatile solutes can be concentrated to saturation by membrane distillation. If the solute is easy to crystalize, the membrane distillation-crystallization phenomenon will appear during the membrane distillation of saturated solutions. It is possible that crystalline products are separated from concentrated solutions by a membrane process. In this work the PVDF capillary membrane, which was improved on hydrophobicity by using LiCl instead of a water-soluble polymer as an additive, has been used for treating the waste water of taurine. The crystalline product has been obtained from the waste water by the membrane distillation-crystallization technique. The results have shown good prospects for a membrane distillation application for treatment of industrial waste water.
Resumo:
A novel cellulose membrane was prepared by using amine oxides as the solvent and its mechanical performance was measured. Steady-state permeation rates of carbon dioxide, hydrogen, methane, nitrogen, oxygen, argon and helium in the homogeneous dense cellulose membrane were measured in the temperature range of 298-353 K and under gas pressures up to 1 MPa. The effect of swelling on hydrophilic membrane permeability was studied in some detail on the cellulose membrane. The difference in gas permeability between the "dry" cellulose membrane and the "water-swollen" cellulose membrane was investigated, and the gas permeability between the cellulose membrane and the Cellophane was compared. In this paper, the separation performance Of CO2 over H-2 in a "water-swollen" cellulose membrane is reported for the first time and the separation factor Of CO2/H-2 can be up to 15. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Herein, one water-soluble functionalized ionic liquid, 1-butyl-3-methylimidazolium dodecyl sulfate ([BMIm(+)][C12H25SO4-]), was designed and its superiorities either used as supporting electrolytes or as additives for successful establishment of MEKC with electrochemiluminescence (ECL) detection (MEKC-ECL) method were investigated. Compared with the common supporting electrolytes such as phosphate solution, 1-butyl-3-methylimidazolium dodecyl sulfate solution used as running buffers led to greatly enhanced ECL intensities and column efficiencies for negative targets, a little increase for neutral-charge ones while maintained nearly unchanged for positive ones due to the electrostatic forces between the large cation BMIm(+) and the solutes and the hydrophobic interactions resulting from the large anion C12H25SO4.
Resumo:
A convenient way to make water-soluble or water-dispersible conducting polyaniline was given by employing protonic acid dopants containing hydrophilic ethyleneoxide oligomer as counter-anion. The conducting polyaniline possessed electrical conductivity in the range of 10(-3) to 10(-2) S/cm, depending on the dopant, and it displayed excellent electrochemical redox reversibility in non-aqueous system.
Resumo:
A convenient way to prepare water-soluble or water-dispersible conducting polyaniline was developed by employing protonic acid dopants containing hydrophilic ethyleneoxide oligomer as counter-ion. The conducting polyaniline possesses electrical conductivity in the range of 10(-3) to 10(-2) S/cm depending on the chosen dopant, and it displays an excellent electrochemical redox reversibility in non-aqueous systems.
Resumo:
Polysaccharides from Ulva pertusa were isolated and prepared by extraction in hot water and precipitation by ethanol. The water-soluble polysaccharides were chemically well defined, containing 47.0% total carbohydrate, 23.2% uronic acids, 17.1% sulfate groups, 1.0% N and 29.9% ash. Gas chromatography analysis demonstrated that the neutral sugars were mainly composed of rhamnose, xylose and glucose and smaller amounts of mannose, galactose and arabinose. The FTIR and C-13-NMR spectra indicated that basic repeating units of the polysaccharides were (beta-D-GlcpA-(1->4)-alpha-L-Rhap 3S) and (alpha-L-IdopA-(1->4)-alpha-L-Rhap 3S). Fifty ICR mice were used to study the effect of water-soluble polysaccharides from Ulva pertusa on the level of plasma lipids, with inositol niacinate as positive control. The results indicated that the polysaccharides significantly lowered the contents of plasma total cholesterol, low-density lipoprotein cholesterol, triglyceride and markedly increased the contents of serum high-density lipoprotein cholesterol, compared with the hyperlipidemia control group (p<0.01). Moreover, administration of polysaccharides significantly decreased the atherogenic index. The present results suggest that the polysaccharides from Ulva pertusa have great potential for preventing ischemic cardiovascular and cerebrovascular diseases.
Resumo:
Located in the Paleozoic uplift along the southern margin of Tu-Ha basin in eastern Xinjiang, the newly discovered Hongshan Cu-Au deposit occurs in the superimposed Mesozoic volcanic basin upon the north section of later Paleozoic Dananhu-Tousuquan accretionary arc. Kalatage Cu-Au orebelt is controlled by NWW-trend faults, and includes Hongshan and Meiling Cu-Au deposits. The host rocks of Hongshan ore district are mainly rhyolitic-dacitic ignimbrites, whereas Cu-Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and granitic porphyry. Mineralization styles are dominantly veinlet-disseminated and veinlet, occasionally stockwork. The mineral association is chalcopyrite, pyrite, bornite, chalcocite and sphalerite. The hydrothermal alteration consists of silicfication, sericitization, alunitization, pyrophylitization, illitization, hydromuscovitization, and chloritization. Hongshan Cu-Au deposit, on the edge of the desert, is one of the driest areas in eastrn Tianshan. Moreover, the highest temperature has been up to 60℃, and the average rainfall receives only 34.1mm/y. The light rainfall and rapid evaporation in the vicinity of this deposit have allowed the formation of a great variety of water-soluble sulfates. Oxidization zone of this deposit lies on the upper part of primary sulfide orebodies appearing with a depth of 50-60m, which is dominant in sulfate minerals. 1. Based on the field observation, the volcanic and sub-volcanic rock composition, hydrothermal alteration, ore structure and mineralization characteristics, this paper proposed that the Hongshan Cu-Au deposit belongs to a transitional type from high-sulfide epithermal to porphyry Cu-Au deposit, which corresponds with the typical HS-epithermal deposit such as Zijinshan Au-Cu deposit in Fujian Province, SE-China. 2. The Hongshan copper-gold deposit was controlled by the tectonic, stratum, magma activity and volcanic apparatus, whereas Au mineralization is closely related to quartz porphyry, rhyolitic porphyry and fine grained pyritization in hydrothermal activity, and Cu mineralization is closely related to quartz porphyry and hydrothermal explosive breccia. 3. Oxidation zone of Hongshan Cu-Au deposit lies on the upper part of primary sulfide orebodies deposit. 23 sulfate minerals were identified in this work. The results of samples XRD and chemical analysis were furthermore confirmed through thermal, infrared spectrum and mössbauer spectrum analysis. Among those, nine minerals as Ferricopiapite, Cuprocopiapite, Rhomboclase, Parabutlerite, Krausite, Yavapaiite, Metasideronatrite Kroehnkite and Paracoquimbite were founded in China for the first time. And Paracoquimbite was secondly reported in the world (first case reported at 1938 in Chile). 4. EPMA analysis shows that Al impurity in crystal lattice is important to polytype formation of paracoquimbite and coquimbite besides stack fault. 5. Compared with Meiling Cu-Au deposit in the same Kalatage ore belt from the characteristics of δ34S of barite, lithofacies, hydrothermal alteration and homogeneous temperature, Hongshan Cu-Au deposit belongs to the same metallogenic system of HS-epithermal type as Meiling Cu-Au deposit. But Hongshan Cu-Au deposit has less extensive alteration and shallower denudation. 6. Sulfur isotope analyses show that δ34S values of pyrites vary in the range of +1.86‰~+5.69‰, with an average of 3.70‰, mostly in the range of +1.86‰~+3.20‰, and δ34Scp<δ34Spy. Therefore ore-forming fluid of porphyry comes from mantle and was contaminated by the earth’s crust. Sulfur isotope has reached balance in ore-forming process. 7. Sulfur isotope analyses show that δ34S values of sulfates vary in the range of +2.15‰~+6.73‰, with an average of +3.74‰, mostly equals as δ34S values of primary sulfides in Hongshan Cu-Au deposit. So supergene sulfates inherit sulfur of primary sulfide. δ34S values are mostly same in different sulfates. As well as pyrite and chalcopyrite, volcanic hot spring and associated native sulfur underground also provide water medium and sulfur during the formation process of sulfate. 8. According to the EPMA of sample chalcopyrite and pyrite in Hongshan Cu-Au, the value of Cu/Ni is 0.98-34.72, mostly close to the value of 5, which shows that Hongshan deposit is a typical volcanogenic magmaic hypothermal deposit. Au and Ag, Zn, Te and Bi are positive correlation, Cu and Hg, Se, Sb are positive correlation, indicates Au and Cu don’t locate in the factor of mineralization of same mineralization groups. The reasons of gold concentration in the oxidation zone are: 1). Change of redox potential (Eh) makes gold to deposit from the liquid of mineralization zone; 2). PH is one of the most factors of gold’s deposition; 3). Soluble complex and colloid of gold can be adsorbed easily. 9. The biotite and hornblende K-Ar isotopic ages from the wall rock-quartz diorite, biotite granite and monzonite granite are 231.99±3.45Ma, 237.97±2.36Ma and 296.53±6.69Ma respectively. The ore-bearing rhyolitic breccia lava contains breccia of the biotite granite which indicates the volcanism and related Cu-Au mineralization occurred later than the granite, possibly in Mesozoic. K-Ar ages of granitoids in Sanya, Baishiquan and Hongliugou area and Molybdenite Re-Os age of Baishan Mo deposit all are in Triassic. Besides late Paleozoic magmatism, igneous magmatic event of Mesozoic was widespread in eastern Tianshan. 10. The K-Ar age dating indicates that the K-Ar age of Voltaite occurred below surface 1m is 56.02±3.98Ma, K-Ar age of Ferricopiapite occurred below surface 1.5m is 8.62±1.12Ma, K-Ar age of Yavapaiite occurred below surface 14 m is 4.07±0.39Ma, and K-Ar age of Voltaite occurred below surface 10 m is 14.73±1.73Ma. So the age interval of oxidation zone of Hongshan copper-golden bed is between 60 -3.38Ma. Oxidization occurred at Caenozoic era (from 65Ma), which can be identified through comparing with different deposits oxidation zone in other countries. The coupling between global tectonic event and climatic change event which occur from Caenozoic era has some effect on epigeosphere system, which can act on the surface of bed oxidation zone similarly. It induces that the age mentioned above coincide with collision of India-Asia and multistage uplifting of Qinhai-Tibet Plateau happened subsequently. Bed oxidation zone is the effect and record of collision and uplifting of Tibet Plateau. The strong chemical weathering of surface accumulation to which was leaded by PETM event occurred Paleocene and Eocene is the reason of Voltaite sharply rises. On the contrary, Ferricopiapite formed due to the global cold weather. The predecessor did much research through biota, isotopes, susceptibility, but this paper try to use different sulfate mineral instead of climatic change. So the research of sulfate minerals not only indicates a great deal of oxidized zone feature, but also the intergrowth of sulfate minerals may be used to trace paleoenviroment and paleoclimate of oxidation zone. 11. Analysis of the information of alteration and mineralization features of four bore cores, induced activity polarization well logging and Eh-4 geophysical section, deep mineralization anomaly objects of Hongshan ore districts shows low resistance, middle and high polarization, measurements of Eh-4 consecutive conductance section show the existing of concealed porphyry ore body deeper than 450m, on the top of and around rock body there are low resistance body ranged from 100-300Ω•m, this area may be the ore-bearing part. In a word, Hongshan Cu-Au deposit deposit is a combine of upper HS-style epithermal Au deposit and deeper porphyry mineralization system. It has great potential to find large HS-style epithermal-porphyry Au-Cu deposits. This paper consists of seven chapters and twenty seven sections. The geological character of deposit is basic condition in this work. Constitute of oxidation zone, research of sulfate mineral, relation between oxidation and primary zone, K-Ar ages of potassic sulfate are key parts of thesis. Genesis of ore deposit is the further expansion of this research. Analysis of ore-controlling factors is the penetration above basic. Analysis of potential is application of exploration.
Resumo:
The Grove Mountains, including 64 nunataks, is situated on an area about 3200km2 in the inland ice cap of east Antarctica in Princess Elizabeth land (72o20'-73°101S, 73°50'-75o40'E), between Zhongshan station and Dome A, about 450km away from Zhongshan station (69°22'S, 76°22'E). Many workers thought there was no pedogenesis in the areas because of the less precipitation and extreme lower temperature. However, during the austral summer in 1999-2000, the Chinaer 16 Antarctic expedition teams entered the inland East Antarctica and found three soil spots in the Southern Mount Harding, Grove Mountains, East Antarctica. It is the first case that soils are discovered in the inland in East Antarctica. Interestingly, the soils in this area show clay fraction migration, which is different from other cold desert soils. In addition, several moraine banks are discovered around the Mount Harding. The soil properties are discussed as below. Desert pavement commonly occurs on the three soil site surfaces, which is composed of pebbles and fragments formed slowly in typical desert zone. Many pebbles are subround and variegated. These pebbles are formed by abrasion caused by not only wind and wind selective transportation, but also salt weathering and thaw-freezing action on rocks. The wind blows the boulders and bedrocks with snow grains and small sands. This results in rock disintegration, paved on the soil surface, forming desert pavement, which protects the underground soil from wind-blow. The desert pavement is the typical feature in ice free zone in Antarctica. There developed desert varnish and ventifacts in this area. Rubification is a dominant process in cold desert Antarctic soils. In cold desert soils, rubification results in relatively high concentrations of Fed in soil profile. Stained depth increases progressively with time. The content of Fed is increasing up to surface in each profile. The reddish thin film is observed around the margin of mafic minerals such as biotite, hornblende, and magnetite in parent materials with the microscope analyzing on some soil profiles. So the Fed originates from the weathering of mafic minerals in soils. Accumulations of water-soluble salts, either as discrete horizons or dispersed within the soil, occur in the soil profiles, and the salt encrustations accumulate just beneath surface stones in this area. The results of X-ray diffraction analyses show that the crystalline salts consist of pentahydrite (MgSO4-5H2O), hexahydrite (MgSO4-6H2O), hurlbutite (CaBe2(PO4)2), bloedite (Na2Mg(S04)2-4H2O), et al., being mainly sulfate. The dominant cations in 1:5 soil-water extracts are Mg2+ and Na+, as well as Ca2+ and K+, while the dominant anion is SO42-, then NO3-, Cl- and HCO3-. There are white and yellowish sponge materials covered the stone underside surface, of which the main compounds are quartz (SiO2, 40.75%), rozenite (FeSOKkO, 37.39%), guyanaite (Cr2O3-1.5H2O, 9.30%), and starkeyite (MgSO4-4H2O, 12.56%). 4) The distribution of the clay fraction is related to the maximum content of moisture and salts. Clay fraction migration occurs in the soils, which is different from that of other cold desert soils. X-ray diffraction analyses show that the main clay minerals are illite, smectite, then illite-smectite, little kaolinite and veirniculite. Mica was changed to illite, even to vermiculite by hydration. Illite formed in the initial stage of weathering. The appearance of smectite suggests that it enriched in magnesium, but no strong eluviation, which belongs to cold and arid acid environment. 5) Three soil sites have different moisture. The effect moisture is in the form of little ice in site 1. There is no ice in site 2, and ice-cement horizon is 12 cm below the soil surface in site 3. Salt horizon is 5-10 cm up to the surface in Site 1 and Site 2, while about 26cm in site 3. The differentiation of the active layer and the permafrost are not distinct because of arid climate. The depth of active layer is about 10 cm in this area. Soils and Environment: On the basis of the characteristics of surface rocks, soil colors, horizon differentiation, salt in soils and soil depth, the soils age of the Grove Mountains is 0.5-3.5Ma. No remnants of glaciations are found on the soil sites of Mount Harding, which suggests that the Antarctic glaciations have not reached the soil sites since at least 0.5Ma, and the ice cap was not much higher than present, even during the Last Glacial Maximum. The average altitude of the contact line of level of blue ice and outcrop is 2050m, and the altitude of soil area is 2160m. The relative height deviation is about 110m, so the soils have developed and preserved until today. The parental material of the soils originated from alluvial sedimentary of baserocks nearby. Sporepollen were extracted from the soils, arbor pollen grains are dominant by Pinus and Betula, as well as a small amount Quercus, Juglans, Tilia and Artemisia etc. Judging from the shape and colour, the sporepollen group is likely attributed to Neogene or Pliocene in age. This indicates that there had been a warm period during the Neogene in the Grove Mountains, East Antarctica.
Resumo:
克隆植物具有多种不同于非克隆植物的生长和繁殖策略。本研究首先综述了这些生长与繁殖策略之中,与我们的实验研究相关的尤其是对于去叶干扰适应策略的四个方面,包括克隆整合、克隆分株大小与密度之权衡( tradeoff)过程、碳水化合物贮备与利用、营养繁殖和芽种群(bud population)调节等。预测克隆植物选择什么样的对策以及某种对策发生作用的条件及程度如何,对克隆植物生态学研究者来说,将是富有挑战意味的课题。 羊草(Leymus chinensis (Trin,) Tzvel.)是禾本科的一种多年生根茎型克隆植物,常常处于由放牧或刈割造成的去叶干扰( defoliation)的胁迫下。在我们的第一个实验(2002年)中,考察了去叶干扰和根茎切割( rhizome severing)是否影响根茎本身和分株地上部分的生长、以及营养繁殖芽的数量特征。同时我们检验如下的假设:直接受到去叶干扰的分株除了会受益于可能的补偿作用之外,还会受益于克隆整合作用,即与之保持根茎联系的未受去叶处理的分株将转移碳水化合物或养分给受去叶干扰的分株,使之得以尽快恢复光合组织。实验结果显示:单次去叶干扰影响根茎生长和芽的产生,而对地上部分的生长影响甚微。只有重度去叶干扰才显著影响营养繁殖芽的产生,而轻度去叶干扰作用不明显。所以,当去叶强度不大时,补偿作用机制将弥补植物由于去叶干扰而受到的损失。我们的实验并未检测到克隆整合的发生,可能的原因是本实验持续的时间不足够长或者是由于根茎中的碳水化合物贮备在去叶干扰发生后发挥了作用,缓解了去叶干扰对羊草分株生长及芽生产的所造成的冲击。 在第二个实验(200 3年)中,为了考查相继数次的去叶干扰是否能够启动羊草分株间的克隆整合,以及启动克隆整合所需达到的去叶干扰的频次,我们将实验样方设计为两部分:核心区( Core section)和外围区(Periphery section)。不同频次的去叶处理(0去叶,作为对照; 1次去叶;3次去叶;5次去叶)仅施加于实验样方的核心区。结果表明,经历3次和5次去叶处理的样方外围区的生物量及水溶性碳水化合物( wsc)含量均明显少于经历1次去叶处理及0去叶处理的样方外围区,这意味着克隆整合在3次去叶和5次去叶两种处理中发生了,而在其它两种处理中没有发生。此外,分株的大小一数目之权衡可能在基株(genet)水平上发生,因此,一个克隆植物基株,当部分分株受到去叶干扰后,将增加其分株数目,但优先增加未受到去叶干扰部分的分株数目。我们将羊草的这种行为视为克隆基株试图逃避干扰的“逃逸行为”( escaping behavior)。 同时在实验中,我们监测了实验样方核心区分株的wsc浓度,目的是查明羊草枝条与根茎中wsc浓度随时间的变化格局及其对去叶干扰的响应,意在发现羊草枝条地上、地下部分和根茎中wsc浓度的时间变化之间的联系。在生长旺季,对照处理(即O去叶处理)的wsc浓度显著降低,这是由于植物在此时期的高生长速率和高呼吸速率所致;相比之下,其它经历去叶干扰的三个处理中羊草wsc浓度降低不如对照处理那么明显和迅速,甚至在高频次去叶处理中还有所上升,其原因大概是由于去叶而使叶面积减小,引起枝条的总呼吸下降所致。羊草枝条中最终的wsc浓度没有受到单次去叶处理的显著影响,却很可观地受到相继数次去叶干扰(3次和5次去叶处理)的影响。去叶干扰可能加速了碳水化合物在气温降低时自地上向地下的转移。枝条的地下部分wsc浓度比地上部分更稳定。在地上部分受到去叶干扰后,根茎中的wsc必然向上输出到地上枝条,而强烈的生长会消耗wsc,但可能的克隆整合(通常在相对频繁的去叶干扰条件下发生)将在一定程度上缓解这种wsc消耗。 在此实验中,我们还监测了羊草平均每分株所拥有的芽的数目,包括每分株分蘖节芽(tiller bud)数目和根茎芽(thizomatous bud)数目。从平均每分株芽数目的时间动态来看,各种去叶处理之间的差异程度不大,这主要是羊草在受到去叶干扰后补偿作用的贡献。与对照处理相比,受不同频次去叶干扰的三个处理的根茎芽具有相对于分蘖节的更强的增长优势。去叶干扰对根茎芽生长的促进作用大于对分蘖节芽的促进作用。我们认为这种反应是羊草克隆基株的一种逃避干扰的适应性努力,可视为一种“逃逸行为”,也可看作克隆植物觅养行为(foraging behavior)的一种特殊形式。芽的增长在中等频度的去叶干扰条件下最强,似乎同样符合中度干扰理论。有趣的是,特定频度的去叶干扰可能会造成芽种群中两大类型芽之间比例(根茎芽/分蘖节芽)的振荡现象(Oscillation)。 最后展望了对于羊草今后应继续开展的工作主要集中在两大方面:一是有性繁殖与无性繁殖之间在不同生境或不同干扰条件下的权衡关系;二是处于不同斑块对比度( patch contrast)的生境中的羊草克隆分株之问的生理整合,及其强度与斑块对比度的定量关系。