58 resultados para water depth
Resumo:
In this paper, long interfacial waves of finite amplitude in uniform basic flows are considered with the assumption that the aspect ratio between wavelength and water depth is small. A new model is derived using the velocities at arbitrary distances from the still water level as the velocity variables instead of the commonly used depth-averaged velocities. This significantly improves the dispersion properties and makes them applicable to a wider range of water depths. Since its derivation requires no assumption on wave amplitude, the model thus can be used to describe waves with arbitrary amplitude.
Resumo:
Song and Banner (2002, henceforth referred to as SB02) used a numerical wave tank (developed by Drimer and Agnon, and further refined by Segre, henceforth referred to as DAS) to study the wave breaking in the deep water, and proposed a dimensionless breaking threshold that based on the behaviour of the wave energy modulation and focusing during the evolution of the wave group. In this paper, two modified DAS models are used to further test the SB02's results, the first one (referred to MDAS1) corrected many integral calculation errors appeared in the DAS code, and the second one (referred to MDAS2) replaced the linear boundary element approximation of DAS into the cubic element on the free surface. Researches show that the results of MDAS1 are the same with those of DAS for the simulations of deep water wave breaking, but, the different values of the wavemaker amplitude, the breaking time and the maximum local average energy growth rate delta(max) for the marginal breaking cases are founded by MDAS2 and MDAS1. However, MDAS2 still satisfies the SB02' s breaking threshold. Furthermore, MDAS1 is utilized to study the marginal breaking case in the intermediate water depth when wave passes over a submerged slope, where the slope is given by 1 : 500, 1 : 300, 1 : 150 or 1 : 100. It is found that the maximum local energy density U increases significantly if the slope becomes steeper, and the delta(max) decreases weakly and increases intensively for the marginal recurrence case and marginal breaking case respectively. SB02's breaking threshold is still valid for the wave passing over a submerged slope gentler than 1 : 100 in the intermediate water depth.
Resumo:
Based on the second-order solutions obtained for the three-dimensional weakly nonlinear random waves propagating over a steady uniform current in finite water depth, the joint statistical distribution of the velocity and acceleration of the fluid particle in the current direction is derived using the characteristic function expansion method. From the joint distribution and the Morison equation, the theoretical distributions of drag forces, inertia forces and total random forces caused by waves propagating over a steady uniform current are determined. The distribution of inertia forces is Gaussian as that derived using the linear wave model, whereas the distributions of drag forces and total random forces deviate slightly from those derived utilizing the linear wave model. The distributions presented can be determined by the wave number spectrum of ocean waves, current speed and the second order wave-wave and wave-current interactions. As an illustrative example, for fully developed deep ocean waves, the parameters appeared in the distributions near still water level are calculated for various wind speeds and current speeds by using Donelan-Pierson-Banner spectrum and the effects of the current and the nonlinearity of ocean waves on the distribution are studied. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Eddies are frequently observed in the northeastern South China Sea (SCS). However, there have been few studies on vertical structure and temporal-spatial evolution of these eddies. We analyzed the seasonal Luzon Warm Eddy (LWE) based on Argo float data and the merged data products of satellite altimeters of Topex/Poseidon, Jason-1 and European Research Satellites. The analysis shows that the LWE extends vertically to more than 500 m water depth, with a higher temperature anomaly of 5A degrees C and lower salinity anomaly of 0.5 near the thermocline. The current speeds of the LWE are stronger in its uppermost 200 m, with a maximum speed of 0.6 m/s. Sometimes the LWE incorporates mixed waters from the Kuroshio Current and the SCS, and thus has higher thermohaline characteristics than local marine waters. Time series of eddy kinematic parameters show that the radii and shape of the LWE vary during propagation, and its eddy kinetic energy follows a normal distribution. In addition, we used the empirical orthogonal function (EOF) here to analyze seasonal characteristics of the LWE. The results suggest that the LWE generally forms in July, intensifies in August and September, separates from the coast of Luzon in October and propagates westward, and weakens in December and disappears in February. The LWE's westward migration is approximately along 19A degrees N latitude from northwest of Luzon to southeast of Hainan, with a mean speed of 6.6 cm/s.
Resumo:
本文利用ICP-AES、EPMA、X-ray衍射等测试技术以及聚类分析和因子分析等多种数理统计方法,系统地对中太平洋海区富钴结壳的元素地球化学特征、矿物组成和微观组构进行了研究,并探讨了其成因机制,获得以下主要认识: 1中太平洋海区富钴结壳类型多样,均为水成成因,其矿物相主要由锰矿物相、铁矿物相和非金属矿物相组成;富钴结壳壳层发育多种原生和次生构造类型。 2磷酸盐化作用不仅强烈改变富钴结壳元素初始含量,而且造成富钴结壳某些元素间的相关性发生改变,这些敏感型元素对可用于指示富钴结壳是否发生磷酸盐化。在不同水深段内,未磷酸盐化型富钴结壳的主要元素随经向、纬向的变化趋势相似,表明其受水体化学障、表面生产力和物质来源等环境参数控制;而随水深的变化则具有区域一致性,表明水体化学具有区域成层性。 3未磷酸盐化富钴结壳稀土元素含量和轻重稀土分馏程度随水深发生规律变化,这种变化不仅与它们在海洋中的含量和行为有关,也与海洋背景颗粒的吸附有关;铈(Ce)在富钴结壳中基本上呈4价,且动力学因素控制了其富集过程,因此Ce异常不能用于指示富钴结壳形成环境的氧化程度。 4基于富钴结壳微层呈锯齿状且同一微层生长速率不同,提出了富钴结壳在各种基底表面生长以及后继发育过程受固液界面双电层控制的发育模式。在富钴结壳整个发育过程中,经历了从贫氧环境向富氧环境的转变,但微环境则呈富氧-低氧过程的交替。 关键词: 富钴结壳;中太平洋;元素地球化学;界面双电层
Resumo:
The species composition and abundance of microzooplankton at 10 marine and five coastal stations (Hongdao, Daguhe, Haibohe, Huangdao and Hangxiao) in the Jiaozhou Bay (Qingdao, China) were studied in 2001. The microzooplankton community was found to be dominated by Tintinnopsis beroidea, Tintinnopsis urnula, Tintinnopsis brevicollis and Cvdonellopsis sp. The average abundance of microzooplankton was highly variable among stations. Specifically, the abundance of microzooplankton was higher at inshore stations and lower in the center of the bay (St. 5), bay mouth (St. 9) and outside the bay (St. 10). The highest average annual densities (346 ind./L) was observed at St. 3, while the lowest (55 ind./L) was at St. 10. Two abundance peaks were recorded in May (324 ind./L) and February (300 ind./L). The distribution of microzooplankton in three sampling layers at the 10 stations was relatively homogenous and the abundance decreased slightly as the water depth increased. At coastal stations, the highest average annual density was recorded at Hongdao Station (677 ind./L), followed by Daguhe Station (616 ind./L), Haibohe Station (400 ind./L), Huangdao Station (275 ind./L) and Hangxiao Station (73 ind./L). Furthermore, a 24-h sampling analysis conducted at Hangxiao Station revealed that the microzooplankton assemblages were characterized by a bimodal diel vertical migration pattern, with the highest densities occurring at dusk (154 ind./L), followed by dawn (146 ind./L), noon (93 ind./L) and midnight (77 ind./L). The density of microzooplankton in the Jiaozhou Bay was in the middle range of the densities of temperate coastal waters worldwide.
Resumo:
We collected fish abundance data in the Changjiang (Yangtze River) estuary and adjacent waters in November 1998, May 1999, November 2000, and May 2001. Using the data, we evaluated the characteristics of the fish assemblages at each site and investigated the effect of several environmental factors. We used a multivariate analysis, including community ordination methods such as detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA), and two-way indicator species analysis (TWINSPAN). We analyzed the biological community structure and environmental factors to determine their spatial distributions, temporal dynamics, and seasonal variations. Among the fish species, five exceeded 5% of the total abundance: Harpodon nehereus (42.82%), Benthosema pterotum (13.85%), Setipinna taty (11.64%), Thryssa kammalensis (9.17%) and Apogonichthys lineatus (6.49%). These were separated into four ecological assemblages: hypsithermal-saline, hypsithermal-brackish, hypothermal-brackish, and hypothermal-saline. We evaluated the degree of influence of environmental factors on the fish community. Our analyses suggested that environmental factors including water depth, salinity, turbidity, transparency, nutrient, and suspended matter formed a synthetic spatial gradient between the coastal and pelagic areas. Ecological and environmental factors changed temporally from 1998 to 2001, and drove the fish community succession. The environmental factors driving the fish community structure included bottom temperature, water depth, bottom and surface pH, surface total phosphorous, and bottom dissolved oxygen. This investigation was completed before completion of the Three Gorges Dam; therefore the results of this study provide an important foundation for evaluating the influence of the human activities.
Resumo:
We explore control mechanisms underlying the vertical migration of zooplankton in the water column under the predator-avoidance hypothesis. Two groups of assumptions in which the organisms are assumed to migrate vertically in order to minimize realized or effective predation pressure (type-I) and to minimize changes in realized or effective predation pressure (type-II), respectively, are investigated. Realized predation pressure is defined as the product of light intensity and relative predation abundance and the part of realized predation pressure that really affects organisms is termed as effective predation pressure. Although both types of assumptions can lead to the migration of zooplankton to avoid the mortality from predators, only the mechanisms based on type-II assumptions permit zooplankton to undergo a normal diel vertical migration (morning descent and evening ascent). The assumption of minimizing changes in realized predation pressure is based on consideration of DVM induction only by light intensity and predators. The assumption of minimizing changes in effective predation pressure takes into account, apart from light and predators also the effects of food and temperature. The latter assumption results in the same expression of migration velocity as the former one when both food and temperature are constant over water depth. A significant characteristic of the two type-II assumptions is that the relative change in light intensity plays a primary role in determining the migration velocity. The photoresponse is modified by other environmental variables: predation pressure, food and temperature. Both light and predation pressure are necessary for organisms to undertake DVM. We analyse the effect of each single variable. The modification of the phototaxis of migratory organisms depends on the vertical distribution of these variables. (C) 2001 Academic Press.
Resumo:
Survival, growth and immune response of the scallop, Chlamys farreri, cultured in lantern nets at five different depths (2, 5, 10, 15, and 20 m below the sea surface) were studied in Haizhou Bay during the hot season (summer and autumn) of 2007. Survival and growth rates were quantified bimonthly. Immune activities in hemolymph (superoxide dismutase (SOD) and acid phosphatase (ACP)) were measured to evaluate the health of scallops at the end of the study. Environmental parameters at the five depths were also monitored during the experiment. Mortalities mainly occurred during summer. Survival of scallops suspended at 15 m (78.0%) and 20 m (86.7%) was significantly higher than at 2 m (62.9%), 5 m (60.8%) or 10 m (66.8%) at the end of the study. Mean shell height grew significantly faster at 10 m (205.0 mu m/d) and 20 m (236.9 mu m/d) than at 2, 5 or 15 m in summer (July 9 to September 1); however, shell growth rate at 20 m was significantly lower than at the other four depths in autumn (September 2 to November 6). In contrast to summer, scallops at 5 m grew faster (262.9 mu m/d) during autumn. The growth of soft tissue at different depths showed a similar trend to the shell. Growth rates of shell height and soft tissue were faster in autumn than in summer, with the exception of shell height at 20 m. SOD activity of scallops increased with depth, and ACP activity was significantly higher at 15 and 20 m than at other depths, which suggests that scallops were healthier near the bottom. Factors explaining the depth-related mortality and growth of scallops are also discussed. We conclude that the mass mortality of scallop, C. farreri, during summer can be prevented by moving the culture area to deeper water and yield can be maximized by suspending the scallops in deep water during summer and then transferring them to shallow water in autumn.
Resumo:
To initially describe vegetation structure and spatial variation in plant biomass in a typical alpine wetland of the Qinghai-Tibetan Plateau, net primary productivity and vegetation in relationship to environmental factors were investigated. In 2002, the wetland remained flooded to an average water depth of 25 cm during the growing season, from July to mid-September. We mapped the floodline and vegetation distribution using GPS (global positioning system). Coverage of vegetation in the wetland was 100%, and the vegetation was zonally distributed along a water depth gradient, with three emergent plant zones (Hippuris vulgaris-dominated zone, Scirpus distigmaticus-dominated zone, and Carex allivescers-dominated zone) and one submerged plant zone (Potamogeton pectinatus-dominated zone). Both aboveground and belowground biomass varied temporally within and among the vegetation zones. Further, net primary productivity (NPP) as estimated by peak biomass also differed among the vegetation zones; aboveground NPP was highest in the Carex-dominated zone with shallowest water and lowest in the Potamogeton zone with deepest water. The area occupied by each zone was 73.5% for P. pectinatus, 2.6% for H. vulgaris, 20.5% for S. distigmaticus, and 3.4% for C. allivescers. Morphological features in relationship to gas-transport efficiency of the aerial part differed among the emergent plants. Of the three emergent plants, H. vulgaris, which dominated in the deeper water, showed greater morphological adaptability to deep water than the other two emergent plants.
Resumo:
We measured methane (CH4) emissions in the Luanhaizi wetland, a typical alpine wetland on the Qinghai-Tibetan Plateau, China, during the plant growth season (early July to mid-September) in 2002. Our aim was to quantify the spatial and temporal variation of CH4 flux and to elucidate key factors in this variation. Static chamber measurements of CH4 flux were made in four vegetation zones along a gradient of water depth. There were three emergent-plant zones (Hippuris-dominated; Scirpus-dominated; and Carex-dominated) and one submerged-plant zone (Potamogeton-dominated). The smallest CH4 flux (seasonal mean = 33.1 mg CH4 m(-2) d(-1)) was, observed in the Potamogeton-dominated zone, which occupied about 74% of the total area of the wetland. The greatest CH4 flux (seasonal mean = 214 mg CH4 m(-2) d(-1)) was observed in the Hippuris-dominated zone, in the second-deepest water area. CH4 flux from three zones (excluding the Carex-dominated zone) showed a marked diurnal change and decreased dramatically under dark conditions. Light intensity had a major influence on the temporal variation in CH4 flux, at least in three of the zones. Methane fluxes from all zones increased during the growing season with increasing aboveground biomass. CH4 flux from the Scirpus-dominated zone was significantly lower than in the other emergent-plant zones despite the large biomass, because the root and rhizome intake ports for CH4 transport in the dominant species were distributed in shallower and more oxidative soil than occupied in the other zones. Spatial and temporal variation in CH4 flux from the alpine wetland was determined by the vegetation zone. Among the dominant species in each zone, there were variations in the density and biomass of shoots, gas-transport system, and root-rhizome architecture. The CH4 flux from a typical alpine wetland on the Qinghai-Tibetan Plateau was as high as those of other boreal and alpine wetlands. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Petroleum and Natural Gas is an important strategic resources. The reserves of Petroleum and Natural Gas can’t meet the need of our country, which also blocks the development of economy and threatens the safety of national. Therefore, it makes a great sense to bring “the second round of oil & gas exploration” into effect and study the exploration of oil and gas of Pre-Cenozoic residual basins in China. The integrated geophysical exploration is the main way to research the Pre-Cenozoic residual basins. Gravity exploration is one of the most important exploration methods, which has played an important role in oil and gas prospecting, such as compartmentalizing geotectonic elements, delineating the distribution range of sedimentary basins, searching oil and gas structure, abstracting oil and gas information, and so on, from its naissance. The isostatic gravity anomalies is significant for exploration, which can help us research deep crustal structure, the equilibrium state of earth, the geologic structure of shallow crust, the basement shape of sedimentary basins and the genetic evolution of sedimentary basins. In the paper, we stress the implication and physical meanings systemically, and discuss the calculation theory. On the basis of previous work, we test different isostatic compensation models and parameters to find out their influences to the result of isostatic gravity anomalies. In addition, we improve the method of isostatic gravity anomalies calculation and give a system of isostatic gravity anomalies calculation which is proved has satisfying effect. From the research above, we find that the results of Platt model and Airy model are consistent, which have similar form and almost the same value. However, by contrast, the Airy model is proved has better adaptability than Platt model. The two main parameters——crust thickness and density difference of crust and mantle, both have influence to the isostatic gravity anomalies, but the latter have more. Finally, we adopt the regional field extending edge method to make the result more of actual geologic condition. On the methods above, we calculate the isostatic gravity anomalies field in Yellow Sea area from the Bouguer gravity anomalies and the water depth and altitude data. And then the isostatic gravity anomalies character is analyzed and the integrated geological-geophysical interpretation is made on the basis of summarizing the previous research result systemically and analyzing other geophysical data and geological information. From the research, we find that the Yellow Sea area belongs to continental type crust equilibrium regions, where the isostatic gravity anomalies field is placid and has less fluctuation values, which implies that the area is in equilibrium state to different extends.
Resumo:
Through generalizing the thermal field characteristics in gas hydrates distribution area in the world, the favorable thermal conditions for gas hydrates in the South China Sea are analyzed firstly. On the basis of above analysis, focused on the gas hydrates stability zone (GHSZ), the dissertation initiated the gas hydrates studies with geothermal methods in the South China Sea which will provide useful information for gas hydrates resource exploration and evaluation in the future. On the basis of study on hydrates phase equilibrium and the GHSZ affecting factors, the potential planar distribution of gas hydrates is determined by studying the temperature and pressure conditions in the sea bottom with different water depth, and the thickness of GHSZ is attained by solving the hydrates phase boundary curve equation and geothermal gradient curve equation. The result shows that, if the chemical composition of hydrocarbons contains methane only and the salt content of water is 3.5%, hydrates can form and keep stable at sea bottom at water depth not less than 550m, and the thickness of GHSZ is more than 200m in Xisha Through, Southeastern area of Dongsha Islands, Southwestern basin of Taiwan Island, northern area of Nansha Trough. The GHSZ is thicker with heat flow, geothermal gradient, and thermal conductivity decreasing, and with water depth increasing. Geothermal field simulating also attains the base of GHSZ in Xisha through, which is less than the depth of BSR. Although the present T-P conditions is not the most favorable for gas hydrates through 6Ma history, gas hydrates are still profitable in Xisha Through, Southeastern area of Dongsha Islands, Southwestern basin of Taiwan Island, Luzon Trough and northern area of Nansha Trough by systemic study on the sedimentary and structural characteristics, the conditions of T-P and natural gas source, considering geochemical and geophysical indications found in the South China Sea.