69 resultados para wake
Resumo:
该文通过数值方法求解二维不可压Navier-Stokes方程,对均匀来流中静止、旋转和旋转振荡圆柱绕流进行了系统的数值模拟.该文采用有限体积法对控制方程进行离散,选用元结构化四边形网格剖分计算区域,关于速度-压力耦合的处理使用了SIMPLEC方法.经过了大量的数值模拟,分盺166L鸬玫搅苏饧钢秩屏鞯氖的D饨峁?该文重点是用快速傅里叶变换(FFT)方法对旋转振荡圆柱绕流中的频率耦合现象进行研究,并分析在不同频率耦合作用下涡形成、发展和脱落的规律.
Resumo:
The hydrodynamics of a free flapping foil is studied numerically. The foil undergoes a forced vertical oscillation and is free to move horizontally. The effect of chord-thickness ratio is investigated by varying this parameter while fixing other ones such as the Reynolds number, the density ratio, and the flapping amplitude. Three different flow regimes have been identified when we increase the chord-thickness ratio, i.e., left-right symmetry, back-and-forth chaotic motion, and unidirectional motion with staggered vortex street. It is observed that the chord-thickness ratio can affect the symmetry-breaking bifurcation, the arrangement of vortices in the wake, and the terminal velocity of the foil. The similarity in the symmetry-breaking bifurcation of the present problem to that of a flapping body under constraint is discussed. A comparison between the dynamic behaviors of an elliptic foil and a rectangular foil at various chord-thickness ratios is also presented.
Resumo:
The dynamics of long slender cylinders undergoing vortex-induced vibrations (VIV) is studied in this work. Long slender cylinders such as risers or tension legs are widely used in the field of ocean engineering. When the sea current flows past a cylinder, it will be excited due to vortex shedding. A three-dimensional time domain model is formulated to describe the response of the cylinder, in which the in-line (IL) and cross-flow (CF) deflections are coupled. The wake dynamics, including in-line and cross-flow vibrations, is represented using a pair of non-linear oscillators distributed along the cylinder. The wake oscillators are coupled to the dynamics of the long cylinder with the acceleration coupling term. A non-linear fluid force model is accounted for to reflect the relative motion of cylinder to current. The model is validated against the published data from a tank experiment with the free span riser. The comparisons show that some aspects due to VIV of long flexible cylinders can be reproduced by the proposed model, such as vibrating frequency, dominant mode number, occurrence and transition of the standing or traveling waves. In the case study, the simulations show that the IL curvature is not smaller than CF curvature, which indicates that both IL and CF vibrations are important for the structural fatigue damage.
Resumo:
The JTZ model [C. Jung, T. T¶el and E. Ziemniak, Chaos 3, (1993) 555], as a theoretical model of a plane wake behind a circular cylinder in a narrow channel at a moderate Reynolds number, has previously been employed to analyze phenomena of chaotic scattering. It is ex- tended here to describe an open plane wake without the con¯ned nar- row channel by incorporating a double row of shedding vortices into the intermediate and far wake. The extended JTZ model is found in qualitative agreement with both direct numerical simulations and ex- perimental results in describing streamlines and vorticity contours. To further validate its applications to particle transport processes, the in- teraction between small spherical particles and vortices in an extended JTZ model °ow is studied. It is shown that the particle size has signif- icant in°uences on the features of particle trajectories, which have two characteristic patterns: one is rotating around the vortex centers and the other accumulating in the exterior of vortices. Numerical results based on the extended JTZ model are found in qualitative agreement with experimental ones in the normal range of particle sizes.
Resumo:
In this work, a level set method is developed for simulating the motion of a fluid particle rising in non-Newtonian fluids described by generalized Newtonian as well as viscoelastic model fluids. As the shear-thinning model we use a Carreau-Yasuda model, and the viscoelastic effect can be modeled with Oldroyd-B constitutive equations. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The level set method is implemented to compute the motion of a bubble in a Newtonian fluid as one of typical examples for validation, and the computational results are in good agreement with the reported experimental data.The level set method is also applied for simulating a Newtonian drop rising in Carreau-Yasuda and Oldroyd-B fluids.Numerical results including noticeably negative wake behind the drop and viscosity field are obtained, and compare satisfactorily with the known literature data.
Resumo:
Unlike most previous studies on the transverse vortex-induced vibration(VIV) of a cylinder mainly under the wallfree condition (Williamson & Govardhan,2004),this paper experimentally investigates the vortex-induced vibration of a cylinder with two degrees of freedom near a rigid wall exposed to steady flow.The amplitude and frequency responses of the cylinder are discussed.The lee wake flow patterns of the cylinder undergoing VIV were visualized by employing the hydrogen bubble technique.The effects of the gap-to-diameter ratio (e0/D) and the mass ratio on the vibration amplitude and frequency are analyzed.Comparisons of VIV response of the cylinder are made between one degree (only transverse) and two degrees of freedom (streamwise and transverse) and those between the present study and previous ones.The experimental observation indicates that there are two types of streamwise vibration,i.e.the first streamwise vibration (FSV) with small amplitude and the second streamwise vibration (SSV) which coexists with transverse vibration.The vortex shedding pattem for the FSV is approximately symmetric and that for the SSV is alternate.The first streamwise vibration tends to disappear with the decrease of e0/D.For the case of large gap-to-diameter ratios (e.g.e0/D = 0.54~1.58),the maximum amplitudes of the second streamwise vibration and transverse one increase with the increasing gapto-diameter ratio.But for the case of small gap-to-diameter ratios (e.g.e0/D = 0.16,0.23),the vibration amplitude of the cylinder increases slowly at the initial stage (i.e.at small reduced velocity V,),and across the maximum amplitude it decreases quickly at the last stage (i.e.at large Vr).Within the range ofthe examined small mass ratio (m<4),both streamwise and transverse vibration amplitude of the cylinder decrease with the increase of mass ratio for the fixed value of V,.The vibration range (in terms of Vr ) tends to widen with the decrease of the mass ratio.In the second streamwise vibration region,the vibration frequency of the cylinder with a small mass ratio (e.g.mx = 1.44) undergoes a jump at a certain Vr,.The maximum amplitudes of the transverse vibration for two-degree-of-freedom case is larger than that for one-degree-of-freedom case,but the transverse vibration frequency of the cylinder with two degrees of freedom is lower than that with one degree of freedom (transverse).
Resumo:
Electron acceleration from the interaction of an intense short-pulse laser with low density plasma is considered. The relation between direct electron acceleration within the laser pulse and that in the wake is investigated analytically. The magnitude and location of the ponderomotive-force-caused charge separation field with respect to that of the pulse determine the relative effectiveness of the two acceleration mechanisms. It is shown that there is an optimum condition for acceleration in the wake. Electron acceleration within the pulse dominates as the pulse becomes sufficiently short, and the latter directly drives and even traps the electrons. The latter can reach ultrahigh energies and can be extracted by impinging the pulse on a solid target. (C) 2003 American Institute of Physics.
Resumo:
The origin of beam disparity in emittance and betatron oscillation orbits, in and out of the polarization plane of the drive laser of laser-plasma accelerators, is explained in terms of betatron oscillations driven by the laser field. As trapped electrons accelerate, they move forward and interact with the laser pulse. For the bubble regime, a simple model is presented to describe this interaction in terms of a harmonic oscillator with a driving force from the laser and a restoring force from the plasma wake field. The resulting beam oscillations in the polarization plane, with period approximately the wavelength of the driving laser, increase emittance in that plane and cause microbunching of the beam. These effects are observed directly in 3D particle-in-cell simulations.
Resumo:
Self-trapping, stopping, and absorption of an ultrashort ultraintense linearly polarized laser pulse in a finite plasma slab of near-critical density is investigated by particle-in-cell simulation. As in the underdense plasma, an electron cavity is created by the pressure of the transmitted part of the light pulse and it traps the latter. Since the background plasma is at near-critical density, no wake plasma oscillation is created. The propagating self-trapped light rapidly comes to a stop inside the slab. Subsequent ion Coulomb explosion of the stopped cavity leads to explosive expulsion of its ions and formation of an extended channel having extremely low plasma density. The energetic Coulomb-exploded ions form shock layers of high density and temperature at the channel boundary. In contrast to a propagating pulse in a lower density plasma, here the energy of the trapped light is deposited onto a stationary and highly localized region of the plasma. This highly localized energy-deposition process can be relevant to the fast ignition scheme of inertial fusion.
Resumo:
The triggering of wave-breaking in a three-dimensional laser plasma wake (bubble) is investigated. The Coulomb potential from a nanowire is used to disturb the wake field to initialize the wave-breaking. The electron acceleration becomes more stable and the laser power needed for self-trapping is lowered. Three-dimensional particle-in-cell simulations were performed. Electrons with a charge of about 100 pC can be accelerated stably to energy about 170 MeV with a laser energy of 460 mJ. The first step towards tailoring the electron beam properties such as the energy, energy spread, and charge is discussed. (C) 2007 American Institute of Physics.
Resumo:
Proton trapping and acceleration by an electron bubble-channel structure in laser interaction with high-density plasma is investigated by using three-dimensional particle-in-cell simulations. It is shown that protons can be trapped, bunched, and efficiently accelerated for appropriate laser and plasma parameters, and the proton acceleration is enhanced if the plasma consists mainly of heavier ions such as tritium. The observed results are analyzed and discussed in terms of a one-dimensional analytical three-component-plasma wake model.
Resumo:
海表面温度(Sea Surface Temperature, SST)是海洋生态环境变化的重要因子,也是海洋观测研究的最重要的因子之一。海表温度场表征了海洋热力、动力过程和海洋与大气相互作用的综合结果,是反映海气热量、动力和水汽交换的重要参量,也是气候变化及海洋营养盐浓度和初级生产力的重要影响因子。台风过后通常会在上层海洋引起冷迹,即台风路径附近的海表温度降低。海表温度的变化是台风与海洋之间能量交换的关键,对于台风的产生,演化和强度变化有非常重要的作用。因此,研究上层海洋对台风的响应,特别是海表温度对台风的响应过程有非常重要的科学意义。本研究主要利用微波SST逐日数据资料统计研究了海表面温度对南海台风的响应过程,并分析了中尺度涡(特别是气旋性涡)对台风所引起的降温幅度和降温位置的影响作用。在此研究基础上初步尝试提出了一种新的量化台风降温效应的方法。 首先,本研究以1998-2009年总共12年内经过中国南海的92个台风为研究对象,利用逐日连续的微波TMI及TMI-AMSER海表温度数据资料分析了92个台风所引起的最大降温幅度以及冷迹位置的分布特征。统计结果表明有64个(69.6%)台风引起了海表温度明显的降低(降温≥2oC),而对最大降温出现的位置进行分析发现:有超过半数(56个)的台风引起的最大降温位于台风路径的附近或路径右侧,同时还有8个(8.7%)台风引起的最大降温明显位于路径的左侧。文中选取了冷迹相对于台风路径出现在不同位置(左、右、附近)的4个台风为例来说明台风引起的降温特征。通过量化降温中心到台风路径的距离发现台风所引起的最大降温出现的位置主要集中分布在路径左右两侧100km范围内。另外,通过对比台风来之前的海平面高度距平发现先于台风之前处在于上层海洋环境的冷涡,特别是强冷涡,在台风引起的海表面降温幅度和位置分布中可能起着重要的作用,其中冷涡的位置与台风所引起的最大降温中心出现的位置有很好的相关性。 其次,本研究提出一个新的描述降温效应的指数。台风所经过的海域往往会出现海表温度的降低,而海表温度的变化对海洋生态系统有很重要的影响。台风的降温效应因台风、背景温度场和台风前的海洋环境条件而异。目前,海表温度对台风的响应效应主要是通过三个物理量来描述,降温幅度、冷迹范围、冷迹持续时间。但是还没有一个综合的量来对台风的降温效应进行定量的描述。本研究利用遥感微波SST数据尝试初步
Resumo:
We simultaneously recorded auditory evoked potentials (AEP) from the temporal cortex (TCx), the dorsolateral prefrontal cortex (dPFCx) and the parietal cortex (PCx) in the freely moving rhesus monkey to investigate state-dependent changes of the AEP. AEPs obtained during passive wakefulness, active wakefulness (AW), slow wave sleep and rapid-eye-movement sleep (REM) were compared. Results showed that AEP from all three cerebral areas were modulated by brain states. However, the amplitude of AEP from dPFCx and PCx significantly appeared greater attenuation than that from the TCx during AW and REM. These results indicate that the modulation of brain state on AEP from all three cerebral areas investigated is not uniform, which suggests that different cerebral areas have differential functional contributions during sleep-wake cycle. (C) 2002 Elsevier Science Ireland Ltd.. All rights reserved.
Resumo:
Bats (Chiroptera) are the second-most abundant mammalian order in the world, occupying a diverse range of habitats and exhibiting many different life history traits. In order to contribute to this highly underrepresented group we describe the sleep architecture of two species of frugivorous bat, the greater short-nosed fruit bat (Cynopterus sphinx) and the lesser dawn fruit bat (Eonycteris spelaea). Electroencephalogram (EEG) and electromyogram (EMG) data were recorded from multiple individuals (>= 5) by telemetry over a 72-h period in a laboratory setting with light/dark cycles equivalent to those found in the wild. Our results show that over a 24-h period both species spent more time asleep than awake (mean 15 h), less than previous reported for Chiroptera (20 h). C sphinx spent significantly more of its non-rapid eye movement sleep (NREM) and rapid eye movement sleep (REM) quotas during the light phase, while E. spelaea divided its sleep-wake architecture equally between both light and dark phases. Comparing the sleep patterns of the two species found that C. sphinx had significantly fewer NREM and REM episodes than E. spelaea but each episode lasted for a significantly longer period of time. Potential hypotheses to explain the differences in the sleep architecture of C. sphinx with E. spelaea, including risk of predation and social interaction are discussed. (C) 2010 Published by Elsevier B.V.
Resumo:
在传统的软件开发过程中,开发者更关注软件开发生命周期的管理,而对软 件开发后生命周期的管理并不热心。随着信息技术和互联网技术的快速发展,软 件产业发生了重大变革。新的软件运营模式要求对软件开发后生命周期管理提供 完善的支持。 本文首先回顾了传统的软件发布技术。PXE技术提供了网络远程引导功能, 该技术结合网络远程唤醒技术Wake-on-LAN使得通过网络远程控制客户机安装 操作系统成为可能。网络安装软件有基于网络克隆的Symantec Ghost和Windows Server 2003 RIS;有基于脚本的Kickstart;有基于镜像的SystemImager suite。在 开源系统中,APT是最为著名的包管理工具,它较为完善地解决了软件包之间的 依赖关系。网络更新技术则提供了更多的功能,目前的更新软件有:通用产品更 新器Install Shield, Power Update, Software Dock, Marimba等;以及供应商产品更 新器Microsoft Update, Windows Update, Microsoft SUS, Microsoft SMS, Norton AntiVirus LiveUpate等。 美国Colorado大学为软件开发后生命周期建立了一个体系结构Software Dock,并实现了一个粗略的原型系统。本研究侧重分析了应用软件的发布和恢 复机制,提出以用户的角度看待软件开发后生命周期管理的思想,建立了一个软 件发布机制体系结构,试图解决如下问题:系统重装后的运行态恢复,即系统崩 溃后如何快速而灵活地恢复到指定状态点并且重建该状态点的运行状态(即运行 态恢复);应用软件恢复透明化和即点即用。