142 resultados para tuning without chirp
Resumo:
It is shown theoretically that the propagation of plasmons can be tuned by an external electric field via spin-orbit interactions in a two-dimensional electron gas formed in a semiconductor heterostructure. This may provide a manageable way of transmitting quantum information in a quantum device. A possible plasmon field effect transistor is proposed.
Resumo:
A scheme for hi-fi all-optical continuously tunable delay is proposed. The signal wavelength is converted to a desired idler wavelength and converted back after being delayed by a high linear-chirp-rate (HLCR) fiber Bragg grating (FBG) based on four-wave mixing (FWM) in a highly-nonlinear photonic crystal fiber (HN-PCF). In our experiment, 400 ps (more than 8 full width of half maximum, FWHM) tunable delay is achieved for a 10 GHz clock pulse with relative pulse width broaden ratio (RPWBR) of 2.08%. The power penalty is only 0.3 dB at 10(-9) BER for a 10 Gb/s 2(31)-1 pseudo random bit sequence (PRBS) data. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
We have fabricated a resonant-cavity-enhanced photodiode (RCE-PD) with InGaAs quantum dots (QDs) as an active medium. This sort of QD-embedded RCE-PD is capable of a peak external quantum efficiency of 32% and responsivity of 0.27A/W at 1.058 mu m with a full width at half maximum (FWHM) of 5 nm. Angle-resolved photocurrent response eventually proves that with the detection angle changing from 0 degrees to 60 degrees, the peak-current wavelength shifts towards the short wavelength side by 37 nm, while the quantum efficiency remains larger than 15%.
Resumo:
A new method of analyzing the chirp characteristics of directly modulated lasers and integrated laser-modulators is presented in this paper. Phase-circuit has been introduced into the circuit model of distributed feedback (DFB) lasers in the analysis. Therefore, the chirp characteristics of the device can be obtained by simulating the modified circuit model. The simulation results agree well with the published data. Furthermore, this modified model is combined with the circuit model of electroabsorption (EA) modulators to simulate the chirp characteristics of the monolithic integration of a DFB laser and an EA modulator. The simulation is focused on the dependence of the frequency chirp of the integrated device on the isolation resistance between laser and modulator. Much lower chirp can be seen in the integrated lightwave source compared to the directly modulated laser.
Resumo:
A simple process for fabricating low-cost Si-based continuously tunable long-wavelength resonant-cavity-enhanced (RCE) photodetectors has been investigated. High-contrast SiO2/Si(Deltan similar to2) was employed as mirrors to eliminate the need to grow thick epitaxial distributed Bragg reflectors. Such high-reflectivity SiO2/Si mirrors were deposited on the as-grown InGaAs epitaxy layers, and then were bonded to silicon substrates at a low temperature of 350 C without any special treatment on bonding surfaces, employing silicate gel as the bonding medium. The cost is thus decreased. A thermally tunable Si-based InGaAs RCE photodetector operating at 1.3-1.6 mum was obtained, with a quantum efficiency of about 44% at the resonant wavelength of 1476 nm and a tuning range of 14.5 nm. It demonstrates a great potential for industry processes. (C) 2005 American Institute of Physics.
Resumo:
A novel and simple method for measuring the chirp parameter, frequency, and intensity modulation indexes of directly modulated lasers is proposed in a small-signal modulation scheme. A graphical approach is presented. An analytical solution to the measurement of low chirp parameters is also given. The measured results agree well with those obtained using the conventional methods.
Resumo:
We present fabrication and experimental measurement of a series of photonic crystal waveguides. The complete devices consist of an injector taper down from 3 mu m into a triangular-lattice air-hole single-line-defect waveguide with lattice constant from 410nm to 470nm and normalized radius 0.31. We fabricate these devices on a siliconon-insulator substrate and characterize them using a tunable laser source over a wavelength range from 1510nm to 1640nm. A sharp attenuation at photonic crystal waveguide mode edge is observed for most structures. The edge of guided band is shifted about 30nm with the 10nm increase of the lattice constant. We obtain high-efficiency light propagation and broad flat spectrum response of the photonic crystal waveguides.
Resumo:
We present a modified method for detecting the concurrence in an arbitrary two-qubit quantum state rho(AB) with local operations and classical communication. In this method, it is not necessary for the two observers to prepare the quantum state rho(AB) by the structural physical approximation. Their main task is to measure four specific functions via two local quantum networks. With these functions they can determine the concurrence and then the entanglement of formation.
Resumo:
We have investigated the effect of different cap layers on the photoluminescence (PL) of self-assembled InAs/GaAs quantum dots (QDs). Based upon different cap layers, the wavelength of InAs QDs can be tuned to the range from 1.3 to 1.5 mum. An InAlAs and InGaAs combination layer can enlarge the energy separation between the ground and first excited radiative transition. GaAs/InAs short period superlattices (SLs) make the emission wavelength shift to 1.53 mum. The PL intensity of InAs QDs capped with GaAs/InAs SLs shows an anomalous increase with increasing temperature. We attribute this to the transfer of carriers between different QDs.
Resumo:
The spin interaction and the effective g factor of a magnetic exciton (ME) are investigated theoretically in a diluted magnetic semiconductor (DMS) quantum dot (QD), including the Coulomb interaction and the sp-d exchange interaction. At low magnetic field, the ME energy decreases rapidly with increasing magnetic field and saturates at high magnetic field for high Mn concentration. The ground state of the ME exhibits an interesting crossing behavior between sigma(+)-ME and sigma(-)-ME for low Mn concentration. The g(ex) factor of the ME in a DMS QD displays a monotonic decrease with increasing magnetic field and can be tuned to zero by an external magnetic field. (C) 2003 American Institute of Physics.
Resumo:
By means of hydrostatic pressure tuning, we have observed the strong-coupling exciton-polariton mode in a planar microcavity with an InGaAs/GaAs quantum well embedded in it, over a pressure range from 0.37 to 0.41 GPa. The experimental data can be fitted very well to a corresponding theoretical formula with a unique value of the vacuum Rabi splitting equal to 6.0 meV. A comparison between pressure tuning and other tuning methods is made as regards to what extent the intrinsic features of the exciton and cavity will be influenced during the tuning procedure.
Resumo:
In this paper the resonant wavelength of a long period fiber grating (LPG) is tuned toward longer wavelength by etching the fiber, For LP04 and LP05 cladding modes', the tuning ranges of 23 and 81 nm are achieved, respectively. Also the dependence of the resonant wavelength on the cladding radius of LPG is theoretically simulated. (C) 2001 Elsevier Science B,V. All rights reserved.
Resumo:
We demonstrate that by increasing the amount of (In, Ga)As deposit in a quantum dot layer, the intersublevel absorption wavelength for (In, Ga)As/GaAs quantum-dot infrared photodetectors can be blue-shifted from 15 to 10 mu m while the photoluminescence peak is red-shifted. We directly compare the measured energy spacing between intersublevels obtained from infrared absorption spectroscopy with those obtained from photoluminescence spectroscopy. We find that the intersublevel energy spacing determined from absorption measurements is much larger than that obtained from the photoluminescence measurements. (C) 2000 American Institute of Physics. [S0003-6951(00)04524-1].
Resumo:
Wavelength tuning of exciton emissions has been achieved simply by inserting an InAs submonolayer at the centre of GaAs quantum wells during molecular beam epitaxy growth. Photoluminescence measurements show that the emission energy can be effectively tuned from the quantum-well-determined energy down to less than the band gap of GaAs, depending on the well width as well as the InAs layer thickness. Using the effective-mass approximation, the tuning effect can be well predicted theoretically The results reported here may provide an alternative way to tune the wavelength in optoelectronic devices.