119 resultados para tip and casing


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deformation twinning near a crack tip is observed in b.c.c. metal Mo based on molecular dynamics simulation at temperature T = 50 K and loading rate (K) over dot(II) = 0.0706 MPa m(1/2)/ps. The defor mation twinning is closely controlled by both the crystal geometry orientation and the stress distribution. The width of the deformation twin band is affected by the distance between the upper and lower crack surfaces. The twin plane and twin direction are (<1(1)over bar>2) and [(1) over bar 11], respectively. The initial crack extension occurs in the deformation twin region near the crack tip. The simulation shows that the extension direction of the crack is changed as the crack propagates over the twinning boundary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A correlative reference model for computer molecular dynamics simulations is proposed. Based on this model, a flexible displacement boundary scheme is introduced and the dislocations emitted from a crack tip can continuously pass through the border of the inner discrete atomic region and pile up at the outer continuum region. The effect of the emitted dislocations within the plastic zone on the inner atomistic region can be clearly demonstrated. The simulations for a molybdinum crystal show that a full dislocation in a bcc crystal is dissociated into three partial dislocations and interaction between the crack and the emitted dislocations results in gradual decrease of the local stress intensity factor.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new compatible finite element method for strain gradient theories is presented. In the new finite element method, pure displacement derivatives are taken as the fundamental variables. The new numerical method is successfully used to analyze the simple strain gradient problems – the fundamental fracture problems. Through comparing the numerical solutions with the existed exact solutions, the effectiveness of the new finite element method is tested and confirmed. Additionally, an application of the Zienkiewicz–Taylor C1 finite element method to the strain gradient problem is discussed. By using the new finite element method, plane-strain mode I and mode II crack tip fields are calculated based on a constitutive law which is a simple generalization of the conventional J2 deformation plasticity theory to include strain gradient effects. Three new constitutive parameters enter to characterize the scale over which strain gradient effects become important. During the analysis the general compressible version of Fleck–Hutchinson strain gradient plasticity is adopted. Crack tip solutions, the traction distributions along the plane ahead of the crack tip are calculated. The solutions display the considerable elevation of traction within the zone near the crack tip.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The distribution of stress-strain near a crack tip in a rubber sheet is investigated by employing the constitutive relation given by Gao (1997). It is shown that the crack tip field is composed of two shrinking sectors and one expanding sector. The stress state near the crack tip is in uniaxial tension. The analytical solutions are obtained for both expanding and shrinking sectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The torsional impact response of a penny-shaped crack in an unbounded transversely isotropic solid is considered. The shear moduli are assumed to be functionally graded such that the mathematics is tractable. Laplace transform and Hankel transform are used to reduce the problem to solving a Fredholm integral equation. The crack tip stress fields are obtained. Investigated are the influence of material nonhomogeneity and orthotropy on the dynamic stress intensity factor. The peak value of the dynamic stress intensity factor can be suppressed by increasing the shear moduli's gradient and/or increasing the shear modulus in a direction perpendicular to the crack surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peel test methods are assessed through being applied to a peeling analysis of the ductile film/ceramic substrate system. Through computing the fracture work of the system using the either beam bend model (BB model) or the general plane analysis model (GPA model), surprisingly, a big difference between both model results is found. Although the BB model can capture the plastic dissipation phenomenon for the ductile film case as the GPA model can, it is much sensitive to the choice of the peeling criterion parameters, and it overestimates the plastic bending effect unable to capture crack tip constraint plasticity. In view of the difficulty of measuring interfacial toughness using peel test method when film is the ductile material, a new test method, split test, is recommended and analyzed using the GPA model. The prediction is applied to a wedge-loaded experiment for Al-alloy double-cantilever beam in literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A plane strain mode I crack tip field with strain gradient effects is investigated. A new strain gradient theory is used. An elastic-power law hardening strain gradient material is considered and two hardening laws, i.e. a separation law and an integration Law are used respectively. As for the material with the separation law hardening, the angular distributions of stresses are consistent with the HRR field, which differs from the stress results([19]); the angular distributions of couple stresses are the same as the couple stress results([19]). For the material with the integration law hardening, the stress field and the couple stress field can not exist simultaneously, which is the same as the conclusion([19]), but for the stress dominated field, the angular distributions of stresses are consistent with the HRR field; for the couple stress dominated field, the angular distributions of couple stresses are consistent with those in Ref. [19]. However, the increase in stresses is not observed in strain gradient plasticity because the present theory is based on the rotation gradient of the deformation only, while the crack tip field of mode I is dominated by the tension gradient, which will be shown in another paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper. the effect of indenter tip roundness on hardness behavior for two typical elastic perfectly plastic materials is studied by means of finite element simulation. A rigid conical indenter of semi apex angle 70.3 degrees fitted smoothly with a spherical tip is employed. It is shown that as the indentation depth increases hardness first rises from zero, reaches a maximum and then decreases slowly approaching asymptotically the limiting value equal to that due to a conical indenter of ideally sharp tip. The range within which hardness varies appreciably is comparable to the radius of the indenter tip. The difference between the maximum value and the limiting value depends on the yield stress over the Young's modulus ratio. The smaller this ratio the greater the difference is. Numerical simulation also provides an opportunity for checking the accuracy and limitations of the widely used Oliver-Pharr method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper, a rubber wedge compressed by a line load at its tip is asymptotically analyzed using a special constitutive law proposed by Knowles and Sternberg (K-S elastic law) [J. Elasticity 3 (1973) 67]. The method of dividing sectors proposed by Gao [Theoret. Appl. Fract, Mech. 14 (1990) 219] is used. Domain near the wedge tip can be divided into one expanding sector and two narrowing sectors. Asymptotic equations of the strain-stress field near the wedge tip are derived and solved numerically. The deformation pattern near a wedge tip is completely revealed. A special case. i.e. a half space compressed by a line load is solved while the wedge angle is pi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, TASCflow3D is used to solve inner and outer 3D viscous incompressible turbulent flow (R-e = 5.6 X 10(6)) around axisymmetric body with duct. The governing equation is a RANS equation with standard k-epsilon turbulence model. The discrete method used is a finite volume method based on the finite element approach. In this method, the description of geometry is very flexible and at the same time important conservative properties are retained. The multi-block and algebraic multi-grid techniques are used for the convergence acceleration. Agreement between experimental results and calculation is good. It indicates that this novel approach can be used to simulate complex flow such as the interaction between rotor and stator or propulsion systems containing tip clearance and cavitation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the problem of a crack perpendicular to and terminating at an interface in bimaterial structure with finite boundaries is investigated. The dislocation simulation method and boundary collocation approach are used to derive and solve the basic equations. Two kinds of loading form are considered when the crack lies in a softer or a stiffer material, one is an ideal loading and the other one fits to the practical experiment loading. Complete solutions of the stress field including the T stress are obtained as well as the stress intensity factors. Influences of T stress on the stress field ahead of the crack tip are studied. Finite boundary effects on the stress intensity factors are emphasized. Comparisons with the problem presented by Chen et al. (Int. J. Solids and Structure, 2003, 40, 2731-2755) are discussed also.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mode I steady-state crack growth is analyzed under plane strain conditions in small scale yielding. The elastic-plastic solid is characterized by the mechanism-based strain gradient (MSG) plasticity theory [J. Mech. Phys. Solids 47 (1999) 1239, J. Mech. Phys. Solids 48 (2000) 99]. The distributions of the normal separation stress and the effective stress along the plane ahead of the crack tip are computed using a special finite element method based on the steady-state fundamental relations and the MSG flow theory. The results show that during the steady-state crack growth, the normal separation stress on the plane ahead of the crack tip can achieve considerably high value within the MSG strain gradient sensitive zone. The results also show that the crack tip fields are insensitive to the cell size parameter in the MSG theory. Moreover, in the present research, the steady-state fracture toughness is computed by adopting the embedded process zone (EPZ) model. The results display that the steady-state fracture toughness strongly depends on the separation strength parameter of the EPZ model and the length scale parameter in the MSG theory. Furthermore, in order for the results of steady crack growth to be comparable, an approximate relation between the length scale parameters in the MSG theory and in the Fleck-Hutchinson strain gradient plasticity theory is obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are simulated. Two partial edge dislocations are introduced into workpiece Si, it is found that the motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocations is far below the yield strength of Si. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We previously proposed a method for estimating Young's modulus from instrumented nanoindentation data based on a model assuming that the indenter had a spherical-capped Berkovich geometry to take account of the bluntness effect. The method is now further improved by releasing the constraint on the tip shape, allowing it to have a much broader arbitrariness to range from a conical-tipped shape to a flat-ended shape, whereas the spherical-capped shape is just a special case in between. This method requires two parameters to specify a tip geometry, namely, a volume bluntness ratio V-r and a height bluntness ratio h(r). A set of functional relationships correlating nominal hardness/reduced elastic modulus ratio (H-n/E-r) and elastic work/total work ratio (W-e/W) were established based on dimensional analysis and finite element simulations, with each relationship specified by a set of V-r and h(r). Young's modulus of an indented material can be estimated from these relationships. The method was shown to be valid when applied to S45C carbon steel and 6061 aluminum alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By means of Tersoff and Morse potentials, a three-dimensional molecular dynamics simulation is performed to study atomic force microscopy cutting on silicon monocrystal surface. The interatomic forces between the workpiece and the pin tool and the atoms of workpiece themselves are calculated. A screw dislocation is introduced into workpiece Si. It is found that motion of dislocations does not occur during the atomic force microscopy cutting processing. Simulation results show that the shear stress acting on dislocation is far below the yield strength of Si.