50 resultados para strong-field
Resumo:
Nanocyrstalline LaGaO3 and Dy3+- and Eu3+-doped LaGaO3 were prepared through a Pechini-type sol-gel process. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), photoluminescence, cathodoluminescence spectra, and lifetimes were utilized to characterize the samples. XRD reveals that the samples begin to crystallize at 900 degrees C and pure LaGaO3 phase can be obtained at 1000 degrees C. FE-SEM images indicate that the Dy3+- and Eu3+-doped LaGaO3 samples are both composed of aggregated spherical particles with sizes ranging from 40 to 80 nm. Under the excitation of ultraviolet light and low voltage electron beams (1-5 kV), the undoped LaGaO3 sample shows a strong blue emission peaking at 433 nm, and the Dy3+- and Eu3+-doped LaGaO3 samples show their characteristic emissions of Dy3+ (F-4(9/2)-H-6(15/2) and F-4(9/2)-H-6(13/2) transitions) and Eu3+ (D-5(0,1,2)-F-7(1,2,3,4) transitions), respectively. The relevant luminescence mechanisms are discussed.
Resumo:
Nanocrystalline CaTiO3:Pr3+ phosphor layers were coated on nonaggregated, monodisperse, and spherical SiO2 particles by the sol-gel method, resulting in the formation of core-shell structured SiO2-CaTiO3:Pr3+ particles. X-ray diffraction, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence, cathodoluminescence spectra, as well as lifetimes were utilized to characterize the core-shell structured SiO2-CaTiO3:Pr3+ phosphor particles. The obtained core-shell structured phosphors consist of well dispersed submicron spherical particles with a narrow size distribution. The thickness of the CaTiO3:Pr3+ shell could be easily controlled by changing the number of deposition cycles (about 70 nm for four deposition cycles). The core-shell SiO2-CaTiO3:Pr3+ particles show a strong red emission corresponding to D-1(2)-H-3(4) (612 nm) of Pr3+ under the excitation of ultraviolet (326 nm) and low voltage electron beams (1-5 kV). These particles may be used in field emission displays.
Resumo:
Five Eu~(2+)-doped simple fluorides and six Eu~(2+)-doped complex fluorides are synthesized by solid reactions. The strength of the crystal-field at the sites of Eu~(2+) ion, and the degroe of covalenco of Eu—F bond in these hosts are discussed. The f-f transition emission of Eu~(2+) ion is observed in the hosts which has lower coordination number and strong crystal-field. The f-f transition emission of Eu~(2+) ion is observed for the first time in the simple fluoride AlF_3.
Resumo:
Our rock magnetic analysis of core Ph05 from the West Philippine Sea demonstrates that the core preserves a strong, stable remanent magnetization and meets the magnetic mineral criteria for relative paleointensity (RPI) analyses. The magnetic minerals in the sequence are dominated by pseudosingle-domain magnetite, and the concentration of magnetic minerals is at the same scale. Both the conventional normalizing method and the pseudo-Thellier method were used in conjunction with the examination of the rock magnetic properties and natural remanent magnetization. Susceptibility (chi), anhysteretic remnant magnetization (ARM) and saturation isothermal remnant magnetization (SIRM) were used as the natural remanent magnetization normalizer. However, coherence analysis indicated that only ARM is more suitable for paleointensity reconstruction. The age model of core is established based on oxygen isotope data and AMS(14)C data, which is consistent with the age model estimated from RPI records. The relative paleointensity data provide a continuous record of the intensity variation during the last 200 ka, which correlates well with the global references RPI stacks. Several prominent low paleointensity values are identified and are correlated to the main RPI minima in the SINT-200 record, suggesting that the sediments have recorded the real changes of geomagnetic field.
Resumo:
The chlorophyll fluorescence in soybean leaves was observed by a portable fluorometer CF-1000 under field conditions. On clear days, F-0 increased while F, and F-v/F-m decreased gradually in the morning. At midday F-O reached its maximum while F-v and F-v/F-m reached their minimum. The reverse changes occurred in the afternoon. At dusk these parameters could return to levels near those at dawn. Following exposure to a strong sunlight for more than 3 h, the dark-recovery process displayed three phases: (1) slow increases in F-0, F-v and F-v/F-m within the first hour; (2) a faster decrease in F-0 and faster increases in F-v and F-v/F-m within subsequent two hours; (3) a slow decrease in F-0 and slow increases in F-v and F-v/F-m within the fourth hour. In comparison with darkness, weak irradiance had no stimulating effect on the recovery from photoinhibition. Hence the photoinhibition in soybean leaves is mainly the reflection of reversible inactivation of some photosystem 2 reaction centres, but not the result of D1 protein loss.