300 resultados para spin symmetry


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical properties of the strained wurtzite GaN are investigated theoretically within the nearest neighbor tight-binding method. The piezoelectric effect is also taken into account. The empirical rule has been used in the strained band-structure calculation. The results show that the excitonic transition energies are anisotropic in the c-plane in a high electronic concentration system and have a 60 degrees periodicity, which is in agreement with experiment. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3001937]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically investigate the electron transport and spin polarization of two coupled quantum wells with Dresselhaus spin-orbit interaction. In analogy with the optical dual-channel directional coupler, the resonant tunneling effect is treated by the coupled-mode equations. We demonstrate that spin-up and -down electrons can be completely separated from each other for the system with an appropriate system geometry and a controllable barrier. Our result provides a new approach to construct spin-switching devices without containing any magnetic materials or applying a magnetic field. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2981204]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron spin-dependent transport properties have been theoretically investigated in two-dimensional electron gas (2DEG) modulated by the magnetic field generated by a pair of anti-parallel magnetization ferromagnetic metal stripes and the electrostatic potential provided by a normal metal Schottky stripe. It is shown that the energy positions of the spin-polarization extremes and the width of relative spin conductance excess plateau could be significantly manipulated by the electrostatic potential strength and width, as well as its position relative to the FM stripes. These interesting features are believed useful for designing the electric voltage controlled spin filters. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We suggest a different practical scheme for the direct detection of pure spin current by using the two-color Faraday rotation of optical quantum interference process (QUIP) in a semiconductor system. We demonstrate theoretically that the Faraday rotation of QUIP depends sensitively on the spin orientation and wave vector of the carriers, and can be tuned by the relative phase and the polarization direction of the omega and 2 omega laser beams. By adjusting these parameters, the magnitude and direction of the spin current can be detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically CdTe quantum dots containing a single Mn2+ impurity, including the sp-d exchange interaction between carriers and the magnetic ion and the short-range exchange interaction between electron and hole. We find anticrossing behaviors in the energy spectrum of the electron-hole (e-h) pair that arise from the interplay between exchange interactions and the magnetic field. In addition to the s-d exchange interaction, we find that other mechanisms inducing the anticrossings become important in the strong heavy hole-light hole (hh-lh) mixing regime. The transition strengths between the states with spin projection of Mn2+ ion S-z not equal -5/2 (S-z = -5/2) decrease (increase) with increasing magnetic fields due to the alignment of the Mn2+ spin. The spin splitting of the e-h pair states depends sensitively on the external magnetic and electric field, which reveals useful information about the spin orientation and position of the magnetic ion. Meanwhile, the manipulation of the position of the magnetic ion offers us a way to control the spin splitting of the carriers. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical analysis has been performed by means of the plane-wave expansion method to examine the dispersion properties of photons at high symmetry points of an InP based two-dimensional photonic crystal with square lattice. The Q factors are compared qualitatively. The mechanism of surface-emitting is due to the photon manipulation by periodic dielectric materials in terms of Bragg diffraction. A surface-emitting photonic crystal resonator is designed based on the phenomenon of slow light. Photonic crystal slabs with different unit cells are utilized in the simulation. The results indicate that the change of the air holes can affect the polarization property of the modes. So we can find a way to improve the polarization by reducing the symmetry of the structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the theory of temperature-dependent electron transport, spin polarization, and spin accumulation in a Rashba spin-orbit interaction (RSOI) quantum wire connected nonadiabatically to two normal conductor electrode leads. The influence of both the wire-lead connection and the RSOI on the electron transport is treated analytically by means of a scattering matrix technique and by using an effective free-electron approximation. Through analytical analysis and numerical examples, we demonstrate a simple way to design a sensitive spin-transfer switch that operates without applying any external magnetic fields or attaching ferromagnetic contacts. We also demonstrate that the antisymmetry of the spin accumulation can be destroyed slightly by the coupling between the leads and the wire. Moreover, temperature can weaken the polarization and smear out the oscillations in the spin accumulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherence evolution and echo effect of an electron spin, which is coupled inhomogeneously to an interacting one-dimensional finite spin bath via hyperfine-type interaction, are studied using the adaptive time-dependent density-matrix renormalization group method. It is found that the interplay of the coupling inhomogeneity and the transverse intrabath interactions results in two qualitatively different coherence evolutions, namely, a coherence-preserving evolution characterized by periodic oscillation and a complete decoherence evolution. Correspondingly, the echo effects induced by an electron-spin flip at time tau exhibit stable recoherence pulse sequence for the periodic evolution and a single peak at root 2 tau for the decoherence evolution, respectively. With the diagonal intrabath interaction included, the specific feature of the periodic regime is kept, while the root 2 tau-type echo effect in the decoherence regime is significantly affected. To render the experimental verifications possible, the Hahn echo envelope as a function of tau is calculated, which eliminates the inhomogeneous broadening effect and serves for the identification of the different status of the dynamic coherence evolution, periodic versus decoherence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Manipulation of the spin degree of freedom has been demonstrated in a spin-polarized electron plasma in a heterostructure by using exchange-interaction-induced dynamic spin splitting rather than the Rashba and Dresselhaus types, as revealed by time-resolved Kerr rotation. The measured spin splitting increases from 0.256 meV to 0.559 meV as the bias varies from -0.3 V to -0.6 V. Both the sign switch of the Kerr signal and the phase reversal of Larmor precessions have been observed with biases, which all fit into the framework of exchange-interaction-induced spin splitting. The electrical control of it may provide a new effective scheme for manipulating spin-selected transport in spin FET-like devices. Copyright (C) EPLA, 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin dynamics in the first and second subbands have been examined simultaneously by time resolved Kerr rotation in a single-barrier heterostructure of a 500 nm thick GaAs absorption layer. By scanning the wavelengths of the probe and pump beams towards the short wavelength in the zero magnetic field, the spin coherent time T-2(1)* in the 1st subband E-1 decreases in accordance with the D'yakonov-Perel' (DP) spin decoherence mechanism. Meanwhile, the spin coherence time T-2(2)* in the 2nd subband E-2 remains very low at wavelengths longer than 810 nm, and then is dramatically enhanced afterwards. At 803 nm, T-2(2)* (450 ps) becomes ten times longer than T-2(1)* (50 ps). A new feature has been discovered at the wavelength of 811nm under the bias of -0.3V (807nm under the bias of -0.6V) that the spin coherence times (T-2(1)* and T-2(2)*) and the effective g* factors (vertical bar g*(E-1)vertical bar and vertical bar g*(E-2)vertical bar) all display a sudden change, presumably due to the "resonant" spin exchange coupling between two spin opposite bands. Copyright (C) EPLA, 2008.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current fluctuations can provide additional insight into quantum transport in mesoscopic systems. The present work is carried out for the fluctuation properties of transport through a pair of coupled quantum dots which are connected with ferromagnetic electrodes. Based on an efficient particle-number-resolved master equation approach, we are concerned with not only fluctuations of the total charge and spin currents, but also of each individual spin-dependent component. As a result of competition among the spin polarization, Coulomb interaction, and dot-dot tunnel coupling, rich behaviors are found for the self- and mutual-correlation functions of the spin-dependent currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An exact property is established for the Green's function of a uniform two-dimensional interacting electron gas in a perpendicular magnetic field with spin-orbit interaction. It is shown that the spin-diagonal Green's function is exactly diagonal in the Landau level index even in the presence of electron-electron interactions. For the Green's function with different spin indexes, only that with adjacent Landau level indexes is non-zero. This exact result should be helpful in calculating the Green's function approximately.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate theoretically the spin splitting of the exciton states in semiconductor coupled quantum dots (CQDs) containing a single magnetic ion. We find that the spin splitting can be switched on/off in the CQDs via the sp-d exchange interaction using the electric field. An interesting bright-to-dark exciton transition can be found and it significantly affects the photoluminescence spectrum. This phenomenon is induced by the transition of the ground exciton state, arising from the hole mixing effect, between the bonding and antibonding states. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A two-color time-resolved Kerr rotation spectroscopy system was built, with a femtosecond Ti:sapphire laser and a photonic crystal fiber, to study coherent spin transfer processes in an InGaAs/GaAs quantum well sample. The femtosecond Ti:sapphire laser plays two roles: besides providing a pump beam with a tunable wavelength, it also excites the photonic crystal fiber to generate supercontinuum light ranging from 500 nm to 1600 nm, from which a probe beam with a desirable wavelength is selected with a suitable interference filter. With such a system, we studied spin transfer processes between two semiconductors of different gaps in an InGaAs/GaAs quantum well sample. We found that electron spins generated in the GaAs barrier were transferred coherently into the InGaAs quantum well. A model based on rate equations and Bloch-Torrey equations is used to describe the coherent spin transfer processes quantitatively. With this model, we obtain an effective electron spin accumulation time of 21 ps in the InGaAs quantum well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By utilizing time-resolved Kerr rotation techniques, we have investigated the spin dynamics of a high-mobility low density two-dimensional electron gas in a GaAs/Al0.35Ga0.65As heterostructure in the dependence on temperature from 1.5 to 30 K. It is found that the spin relaxation/dephasing time under a magnetic field of 0.5 T exhibits a maximum of 3.12 ns around 14 K, which is superimposed on an increasing background with rising temperature. The appearance of the maximum is ascribed to that at the temperature where the crossover from the degenerate to the nondegenerate regime takes place, electron-electron Coulomb scattering becomes strongest, and thus inhomogeneous precession broadening due to the D'yakonov-Perel' mechanism becomes weakest. These results agree with the recent theoretical predictions [J. Zhou et al., Phys. Rev. B 15, 045305 (2007)], which verify the importance of electron-electron Coulomb scattering to electron spin relaxation/dephasing.