138 resultados para solution and solubility


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Based on the electrostatic attraction Keggin-type polyoxometalate H4SiW12O40 (SiW12) and small molecule 4-aminobenzo-15-crown-5 ether (4-AB15C5) were alternately deposited on poly (allylamine hydrochloride) (PAH)-derived indium tin oxide (ITO) substrate through a layer-by-layer (LBL) self-assembly, forming a supramolecular multilayer film (film-A). SiW12 was also deposited on a glassy carbon electrode (GCE) derived by 4-AB15C5 via covalent bonding in 0.1 M NaCl aqueous solution and formed a composite monolayer film (film-B). UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared (FTIR) spectroscopy measurements demonstrated that the interactions between SiW12 and 4-AB15C5 in both two film electrodes were the same and caused by the bridging action of oxonium ions. But, the nanostructure in the two film electrodes was different. 4-AB15C5 in film-A was oriented horizontally to ITO substrate, however, that in film-B was oriented vertically to GCE. Namely film-A corresponded to a layer structure, and film-B corresponded to an intercalation structure.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microstructure and some dynamic performances of Ti0.17Zr0.08V0.34RE0.01Cr0.1Ni0.3 (RE=Ce, Dy) hydrogen storage electrode alloys have been investigated using XRD, FESEM-EDS, ICP-MS and EIS measurements. The alloy is composed of V-based solid solution phase with a dendritic shape and a continuous C14 Laves phase with a network shape surrounding the dendrite. Pressure-composition isotherm curves indicate that the alloy with Dy addition has a lower equilibrium hydrogen pressure and a wider plateau region. The alloy electrode with Dy addition has higher discharge capacity, while the alloy electrode with Ce addition has better activation and higher cycle stability. The alloy electrode with Ce addition has better electrochemical activity with higher exchange current density (127.5 mA g(-1)), lower charge transfer resistance (1.37 Omega) and lower apparent activation energy (30.5 kJ mol(-1)). The capacity degradation behavior for the alloy electrode is attributed to two main factors: one is the dissolutions of V and Zr element to KOH solution, and another is the larger charge transfer resistance which increases with increasing cycle number.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The electrostatic layer-by-layer assembly method was successfully used in a multilayer buildup of polyaniline (PANT) and platinum nanocrystals encapsulated in the carboxyl-terminated poly(amidoamine) dendrimers (generation 4.5 G4.5COOH) (Pt-G4.5COOH NPs) on solid substrates. Multilayer growth was monitored by ultraviolet-visible (UV-vis) absorption spectroscopy. The AFM observation revealed a molecularly smooth (PANI/Pt-G4.5COOH NPs) multilayer film which is rougher and thicker than the multilayer of PANT and G4.5COOH (G4.5COOH/PANI)(m). The PANI/Pt-G4.5COOH NPs multilayers show a fast surface-confined electron-exchange process at the Au electrode in an acid solution, and remains stable, reversible and electroactive, even in neutral solution. Furthermore, the multilayers show a strong elect rocatalytic response towards CO oxidation and O-2 reduction, and the catalytic capability can be easily tuned by the control of multilayer thickness.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Heteropolyanions of tungstophosphoric acid (PWA) have been successfully hybridized with carbon nanotubes (CNTs) by a severe mechanical milling. The obtained hybrid is electroactive for hydrogen evolution (HE) at potentials as positive as -0.16 V vs. Ag/AgCl in 0.2 M HClO4 aqueous solution and its electrocatalysis is up to the level of Pt/CNTs (20 wt% Pt) for HE, indicating a vigorous alternative to Pt group metals. The HE mechanism of the hybrid was also studied and it was found that the tungsten oxycarbides are the electroactive components for HE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As a green process, electrochemistry in aqueous solution without a supporting electrolyte has been described based on a simple polyelectrolyte-functionalized ionic liquid (PFIL)-modified electrode. The studied PFIL material combines features of ionic liquids and traditional polyelectrolytes. The ionic liquid part provides a high ionic conductivity and affinity to many different compounds. The polyelectrolyte part has a good stability in aqueous solution and a capability of being immobilized on different substrates. The electrochemical properties of such a PFIL-modified electrode assembly in a supporting electrolyte-free solution have been investigated by using an electrically neutral electroactive species, hydroquinone ( HQ) as the model compound. The partition coefficient and diffusion coefficient of HQ in the PFIL film were calculated to be 0.346 and 4.74 X 10(-6) cm(2) s(-1), respectively. Electrochemistry in PFIL is similar to electrochemistry in a solution of traditional supporting electrolytes, except that the electrochemical reaction takes place in a thin film on the surface of the electrode. PFILs are easily immobilized on solid substrates, are inexpensive and electrochemically stable. A PFIL-modified electrode assembly is successfully used in the flow analysis of HQ by amperometric detection in solution without a supporting electrolyte.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel 3D supramolecular assembly constructed from decavanadate and caffeine building blocks, (NH4)(2)(C8H10N4O2)(4)[H4V10O28].2H(2)O (1), has been synthesized in aqueous solution and characterized by elemental analysis, IR, H-1 NMR, V-51 NMR, TG-DTA, and single crystal X-Ray diffraction. The compound 1 crystallizes in monoclinic system, space group P2(1)/n, a = 15.801(1) Angstrom, b = 12.914(1) Angstrom, c = 15.913(2) Angstrom, beta = 113.55degrees, V = 2976.4 (5) Angstrom(3), Z = 2, R = 0.0498 with 6818 reflections. Water molecules, ammonium ions, and caffeine act as "cement" linking the polyanions into 1D chain along the c-axis by hydrogen bonding. In compound 1, extensive hydrogen-bond contacts and strong pi-pi interactions lead to an ordered 3D supramolecular framework. TG-DTA curves indicate that the weight loss of the complex can be divided into three stages.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Triphenyl pyrazoline derivatives (TPPs) bearing electron withdrawing and pushing substitutents were synthesized. Their photoluminescence (PL) properties in the solution and doped in poly(N-vinylcarbazole) (PVK) thin films were investigated. When TPPs were doped into PVK films the photoluminescence intensity was enhanced with increasing TPPs concentration. It indicated that the energy transfer from PVK to TPPs has happened. Double and three-layer electroluminescence (EL) devices based on PVK doped with TPPs as an active layer were fabricated and investigated and the electroluminescent mechanism was followed by energy transfer from PVK to TPPs. The pyrazoline derivative with both electron withdrawing and pushing substituents was the optimistic candidate for electroluminescent emitter due to higher transfer efficiency from electric energy to light energy as well as larger luminance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mass transfer behaviors of Cd(II), Fe(III), Zn(II), and Eu(III) in sulfuric acid solution using microporous hollow fiber membrane (HFM) containing bis(2,4,4-trimethylpentyl)monothiophosphinic acid (commercial name Cyanex302) were investigated in this paper. The experimental results showed that the values of the mass transfer coefficients (K-w) decreased with an increase of H+ concentration and increased with an increase of extractant Cyanex302 concentration. The mass transfer resistance of Eu3+ was the largest because K-w value of Eu3+ was the smallest. The order of mass transfer rate of metal ions at low pH was Cd > Zn > Fe > Eu. Mixtures of Zn2+ and Eu3+ or of Zn2+ and Cd2+ were well separated in a counter-current circulation experiment using two modules connected in series at different initial acidity and concentration ratio. These results indicate that a hollow fiber membrane extractor is capable of separating the mixture compounds by controlling the acidity of the aqueous solution and by exploiting different mass transfer kinetics. The interfacial activity of Cyanex302 in sulfuric acid solution was measured and interfacial parameters were obtained according to Gibbs adsorption equation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The interaction of antitumor antibiotic, echinomycin (Echi) with guanine (Gua) was thoroughly investigated by adsorptive transfer stripping cyclic voltammetry, ultraviolet and visible adsorption spectra (UV/Vis) and Fourier-transform infrared spectroscopy (FTIR). Electrochemistry provided a simple tool for verifying the occurrence of interaction between Echi and Gua. Echi could be accumulated from the solution and give well-defined electrochemical signals in 0.1 M phosphate buffer solution (pH 7.0) only when Gua was present on the surface of the electrochemically pretreated glass carbon electrode (GCE), suggesting a strong binding of Echi to Gua. All the acquired spectral data showed that a new adduct between Echi and Gua was formed, and two pairs of adjacent intermolecular hydrogen bonds between the Ala backbone atoms in Echi and Gua (Ala-NH to Gua-N3 and Gua-NH2 to Ala-CO) played a dominating role in the interaction. Electrochemistry coupled with spectroscopy techniques could provide a relatively easy way to obtain useful insights into the molecular mechanism of drug-DNA interactions, which should be important in the development of new anticancer drugs with specific base recognition.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A modified Wittig polycondensation was developed by replacing the bulky -PPh3 with -PBu3 ylide. Our studies suggested that the modified polymerization dramatically enhances trans-selectivity due to the decreased 1.3-steric interaction between butyl chain and triphenylamine group, together with the 1,2-steric interaction between the phenyl ring of the ylide and the triphenylamine group of the aldehyde. Moreover, the method also enhances high-molecular weight products by increasing the activity and solubility of the ylide.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A conjugated poly(p-CN-phenylenevinylene) (PCNPV) containing both electron-donating triphenylamine units and electron-withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight-average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi-reversible oxidation with a relatively low potential because of the triphenylamine unit. A single-layer indium tin oxide/PCNPV/Mg-Ag device emitted a bright red light (633 nm).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Stable electroactive film of poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal net-works was assembled on indium oxide glass (ITO) successfully, and the cytochrome c was immobilized on the matrix by the electrostatic interactions. The adsorbed cytochrome c showed a good electrochemical activity with a pair of well-defined redox waves in pH 6.2 phosphate buffer solution, and the adsorbed protein showed more faster electron transfer rate (12.9 s(-1)) on the net-works matrix than those of on inorganic porous or even nano-materials reported recently. The immobilized cytochrome c exhibited a good electrocatalytic activity and amperometric response (2 s) for the reduction of hydrogen peroxide (H2O2). The detection limit for H2O2 was 1.5 mu M, and the linear range was from 3 mu M to 1 mM. Poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal net-works was proved to be a good matrix for protein immobilization and biosensor preparation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study, we describe composite scaffolds composed of synthetic and natural materials with physicochemical properties suitable for tissue engineering applications. Fibrous scaffolds were co-electrospun from a blend of a synthetic biodegradable polymer (poly(lactic-co-glycolic acid), PLGA, 10% solution) and two natural proteins, gelatin (denatured collagen, 8% solution) and (x-elastin (20% solution) at ratios of 3:1:2 and 2:2:2 (v/v/v). The resulting PLGA-gelatin-elastin (PGE) fibers were homogeneous in appearance with an average diameter of 380 80 mn, which was considerably smaller than fibers made under identical conditions from the starting materials (PLGA, 780 +/- 200 nm; gelatin, 447 +/- 1.23 nm; elastin, 1060 170 nm). Upon hydration, PGE fibers swelled to an average fiber diameter of 963 +/- 132 nm, but did not disintegrate. Importantly, PGE scaffolds were stable in an aqueous environment without crosslinking, and were more elastic than those made of pure elastin fibers. To investigate the cytocompatibility of PGE, we cultured H9c2 rat cardiac myoblasts and rat bone marrow stromal cells (BMSCs) on fibrous PGE scaffolds. We found that myoblasts grew equally as well or slightly better on the scaffolds than on tissue-culture plastic. Microscopic evaluation confirmed that myoblasts reached confluence on the scaffold surfaces while simultaneously growing into the scaffolds.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

4-Aminobenzoic acid (4-ABA) was covalently grafted on a glassy carbon electrode (GCE) by amine cation radical formation during the electrooxidation process in 0.1 M KCl aqueous Solution. X-ray photoelectron spectroscopy (XPS) measurement proves the presence of 4-carboxylphenylamine on the GCE. Electron transfer processes of Fe(CN)(6)(3-) in solutions of various pHs at the modified electrode are studied by both cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Changing the solution pH would result in the variation of the terminal group's charge state, based on which the surface pK(a) values were estimated. The copper hexacyanoferrate (CuHCF) multilayer films were formed on 4-ABA/GCE prepared in aqueous solution, and which exhibit good electrochemical behavior with high stability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

TiO2 nanocrystallites were prepared front precursors tetra-n-butyl titanate (Ti(OC4H9)(4)) and titanium tetrachloride (TiCl4). The precursors were hydrolyzed by gaseous water in autoclave, and then calcined at predetermined testing temperatures. The samples were characterized by X-ray diffraction (XRD), thermogravimetry-differential thermal analysis (TG-DTA), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared spectra (FT-IR), and UV-vis diffuse reflectance spectra (DRS). The photocatalytic activities of the samples were evaluated by the photobleaching of methylene blue (MB) in aqueous solution and the photocatalytic oxidation of propylene in gas phase at ambient temperature. The results showed that the anatase phase nanocrystalline TiO2 could be obtained at relatively low temperatures (for precursor Ti(OC4H9)4 at I I VC and for TiCl4 at 140 degrees C, respectively), and that the as prepared samples exhibited high photocatalytic activities to photobleach MB in aqueous solution. As the calcination temperatures increasing. the decolor ratio of MB increased and reached the maximum value of nearly 100% at 600 degrees C, and then decreased. The photobleaching of MB by all samples followed the pseudo-first-order kinetics with respect to MB concentration.