326 resultados para sol-gel method
Resumo:
Monodisperse, core-shell-structured SiO2@NaGd(WO4)(2):Eu3+ particles were prepared by the sol-gel method. The samples were characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, photoluminescence (PL), and low-voltage cathodoluminescence (CL) as well as time-resolved PL spectra and lifetimes. PL and CL study revealed that the core-shell-structured SiO2@NaGd (WO4)(2):Eu3+ particles show strong red emission dominated by the D-5(0) - F-7(2) transition of Eu3+ at 614 nm with a lifetime of 0.74 ms. The PL and CL emission intensity can be tuned by the coating number of NaGd(WO4)(2):Eu3+ phosphor layers on SiO2 and by accelerating voltage and the filament current, respectively.
Resumo:
Nanocrystalline GdPO4 : Eu3+ phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by Pechini sol-gel method, resulting in the formation of core-shell structured SiO2@GdPO4 : Eu3+ particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT IR results indicate that GdPO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the images of FESEM and TEM. Under UV light excitation, the SiO2@GdPO4: Eu3+ phosphors show orange-red luminescence with Eu(3+)sD(0)-F-7(1) (593 nm) as the most prominent group. The PL excitation and emission spectra suggest that an energy transfer occurs from Gd3+ to Eu3+ in SiO2@GdPO4: Eu3+ phosphors. The obtained core-shell phosphors have potential applications in FED and PDP devices.
Resumo:
Tb3+-doped LiYF4 films were deposited on quartz glass by a simple sol-gel method. X-ray diffraction (XRD), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), photoluminescence spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 300 degrees C and fully crystallized at 400 degrees C. AFM and FESEM images of singly coated LiY0.95Tb0.05F4 annealed at 400 degrees C indicated that the film is uniform and crack-free films with average grain size of 90 nm, root mean square roughness of 11 nm and thickness of 120 nm. The doped Tb3+ ions showed its characteristic emission in crystalline LiYF4 films, i.e., D-5(3), F--7(4)J (J = 6, 5, 4, 3) emissions. The optimum doping concentration of the Tb3+ was determined to be 5.0 mol% of Y3+ in LiYF4 films.
Resumo:
SrLa1-xRExGa3O7 (RE = EU3+, Tb3+) phosphor films were deposited on quartz glass substrates by a simple Pechim sol-gel method. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy, field-emission scanning electron microscopy, photoluminescence spectra, and lifetimes were used to characterize the resulting films. The results of XRD indicated that the films began to crystallize at 700 degrees C and crystallized fully at 900 degrees C. The results of FNR spectra were in agreement with those of XRD. Uniform and crack-free films annealed at 900 degrees C were obtained with average grain size of 80 nm, root mean square roughness of 46 nm and thickness of 130 nm The RE ions showed their characteristic emission in crystalline SrLa1-xRExGa3O7 films, i.e., Eu3+ D-0-F-7(J) (J = 0, 1, 2, 3, 4), Tb3+5D4 -(7) F-J (J = 6, 5, 4, 3) emissions, respectively. The optimum concentrations (x) of Eu3+ and Tb3+ were determined to be 50, and 80 mol% in SrLa(1-x)RE(x)GGa(3)O(7) films, respectively.
Resumo:
A new material (IL923SGs) composed of ionic liquids and trialkyl phosphine oxides (Cyanex 923) for Y(III) uptake was prepared via a sol-gel method. The hydrophobic ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate (C(8)mim(+)PF(6)-) was used as solvent medium and pore templating material. The extraction of Y(III) by IL923SGs was mainly due to the complexation of metal ions with Cyanex 923 doped in the solid silica. Ionic liquid was stably doped into the silica gel matrix providing a diffusion medium for Cyanex 923, and this will result in higher removal efficiencies and excellent stability for metal ions separation. IL923SGs were also easily regenerated and reused in the subsequent removal of Y(III) in four cycles.
Resumo:
A series of Eu3+-doped ZnO films have been prepared by a sol-gel method. These films were characterized by X-ray diffraction (XRD) and photoluminecent spectra (PL). Effects of synthetic parameters, such as annealing atmosphere, temperature and concentration of doped ions, on the highly oriented crystal growth were studied in detail. The crystalline structures of films annealed in vacuum have a wurtzite symmetry with highly c-axis orientation. A characteristic D-5(0) -> F-7(J)(J = 1, 2, 3 and 4) red emission is observed due to energy transfer from the ZnO host to the doped Eu3+ in the c-oriented ZnO films.
Resumo:
Nanocrystalline Pb(Zr0.52Ti0.48)O-3 was prepared from lead acetate, zirconium oxynitrate and titanium tetra-n-butoxide by a sol-gel method. It is found that both the crystallization temperature of precursor PZT and PZT product size were increased with increase of V(C3H8O2)/V(H2O) ratio in solution used. At V(C3H8O2)/V(H2O) = 4.47 the gel was formed moderately quick, and the nanocrystalline PZT with uniform granularity and low crystallizing temperature could be obtained. The diameter of the final nanocrystalline was ranged 60similar to70 nm as measured by atomic force microscopy (AFM). The crystallizing temperature of the precursor PZT was 443degreesC and the crystallization reaction was completed at 500degreesC by DTA and TG. The sol-gel reaction process was monitored by FT-IR and XRD.
Resumo:
Polyester thin films containing europium-substituted heteropolytungstate were obtained on quartz plate by the sol-gel method. The films exhibited the characteristic emission bands of the europium ion. The red to orange intensity ratio (R:O) of Eu3+ in the films increased as compared to the corresponding heteropolytungstate solids. The fluorescence lifetime of europium is shorter in the thin film than in the heteropolytungstate solid. The results indicated that the formation of europium-substituted heteropolytungstate/polyester thin film has great effect on the luminescence of europium- substituted heteropolytungstate.
Resumo:
IrO2/SnO2 (10%:90%, molar ratio) electrodes (ITEs) were prepared by the sol-gel method as an alternative to the electrode-position and thermal decomposition process. The electrodes were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force microscope (AFM), cyclic voltammetry (CV) and electrochemical impedance spectra (EIS). From the results of XRD, oxide films prepared at low temperature were in amorphous state, while hydrous IrO2 crystal and cassiterite phase SnO2 were formed at 300 degreesC or even to 500 degreesC. The highly porous structure was confirmed by AFM. The electrochemical experiments demonstrated that the sol-gel method made the ITEs having a fast electron transfer process with good stability and the optimal preparation temperature was 400 degreesC for the highest electroactivity. Furthermore, the electrocatalysis of pyrocatechol on the electrodes was investigated. A quasi-reversible process occurred and a linear range over three orders magnitude (1 x 10(-2) - 10 mM) was obtained by differential pulse voltammetry (DPV). Meanwhile the detection limit of pyrocatechol was 5 x 10(-3) mM. This study indicated that the sol-gel method was an appropriate route to prepare the IrO2/SnO2 electrodes for the electrocatalytic of pyrocatechol.
Resumo:
Nanocrystalline CaWO4 and Eu3+ (Tb3+)-doped CaWO4 phosphor layers were coated on non-aggregated, monodisperse and spherical SiO2 particles by the Pechini sol-gel method, resulting in the formation of SiO2@CaWO4, SiO2@CaWO4:Eu3+/Tb3+, core-shell structured particles. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), photoluminescence (PL), low-voltage cathodoluminescence (CL), time-resolved PL spectra and lifetimes were used to characterize the core-shell structured materials. Both XRD and FT-IR indicate that CaWO4 layers have been successfully coated on the SiO2 particles, which can be further verified by the FESEM and TEM images. The PL and CL demonstrate that the SiO2@CaWO4 sample exhibits blue emission band WO42- with a maximum at 420 nm (lifetime = 12.8 mu s) originated from the 4 groups, while SiO2@CaWO4:Eu3+ and SiO2@CaWO4:Tb3+ show additional red emission dominated by 614 nm (Eu3+:D-5(0)-F-7(2) transition, lifetime = 1.04 ms) and green emission at 544 nm (Tb3+:D-5(4)-F-7(5) transition, lifetime = 1.38 ms), respectively.
Resumo:
Monodisperse, core-shell structured SiO2@Gd-2(WO4)(3):Eu3+ particles were prepared by the sol-gel method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy, transmission electron microscopy, photoluminescence (PL) and low-voltage cathodoluntinescence (CL). PL and CL study revealed that the core-shell structured SiO2@Gd-2(WO4)(3):Eu3+ particles show strong red emission dominated by the D-5(0)-F-7(2) transition of Eu3+ at 615 nm with a lifetime of 0.89 ins. The PL and CL emission intensity can be tuned by the coating number of Gd-2(WO4)(3):Eu3+ phosphor layers on SiO2 particles, the size of the SiO2 core particles, and by accelerating voltage and the filament current, respectively.
Resumo:
Europium-doped nanocrystalline GdVO4 phosphor layers were coated on the surface of preformed submicron silica spheres by sol-gel method. The resulted SiO2@Gd0.95Eu0.05VO4 core-shell particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (FESEM), energy-dispersive X-ray spectra (EDS), transmission electron microscopy (TEM), photoluminescence (PL) spectra, low voltage cathodoluminescence (CL), time resolved PL spectra and kinetic decays. The XRD results demonstrate that the Gd0.95Eu0.05VO4 layers begin to crystallize on the SiO2 spheres after annealing at 600 C and the crystallinity increases with raising the annealing temperature. The obtained core-shell phosphors have spherical shape, narrow size distribution (average size ca. 600 nm), non-agglomeration. The thickness of the Gd0.95Eu0.05VO4 shells on the SiO2 cores could be easily tailored by varying the number of deposition cycles (50 nm for four deposition cycles). PL and CL show that the emissions are dominated by D-5(0)-F-7(2) transition of Eu3+ (618 nm, red).
Resumo:
The single-phase double perovskites Sr2MWO6 (M=Co, Ni) were prepared by sol-gel method. Crystal Structure, magnetic properties and the morphology of Sr2CoWO6 and Sr2NiWO6 were investigated. X-ray powder diffraction (XRD) analysis shows single phase structure for Sr2MWO6 (M=Co, Ni) without any traces of impurities and the crystal structure of all the samples belongs to the tetragonal I4/m space group. SEM image for Sr2MWO6 (M=Co, Ni) indicate that the grains are homogeneous and connect each other very well. The Neel temperature for Sr2CoWO6 and Sr2NiWO6 are 23 K and 59 K, respectively. Magnetic measurements showed that the magnetic moment in these double perovskites originates mainly from the interactions between Ni ions and Co ions.
Resumo:
The rare earth (Eu3+, Dy3+)-polyoxometalate thin films were fabricated on quartz plate by the sol-gel method. The thin films were demonstrated by the luminescence spectra. The thin films exhibit the characteristic emission bands of the rare-earth ions. It is noticed that the yellow to blue intensity ratio (Y:B) of Dy3+ and the red to orange ratio (R:O) of Eu3+ in the films are different from that of the corresponding solids. Furthermore, the thin films present shorter fluorescence lifetime than the pure complexes. The reasons that were responsible for these results were also discussed.
Resumo:
Microporous silica gel has been prepared by the sol-gel method utilizing the hydrolysis and polycondensation of tetraethylorthosilicate (TEOS). The gel has been doped with the luminescent ternary europium complex Eu(TTA)(3)(.)phen: where HTTA=1-(2-thenoyl)-3,3,3-trifluoracetone and phen=1,10-phenanthroline. By contrast to the weak f-f electron absorption bands of Eu3+, the complex organic ligand exhibits intense near ultraviolet absorption. Energy transfer from the ligand to Eu3+ enables the production of efficient, sharp visible luminescence from this material. Utilizing the polymerization of methyl methacrylate, the inorganic/polymer hybrid material containing Eu(TTA)(3)(.)phen has also been obtained. SEM micrographs show uniformly dispersed particles in the nanometre range. The characteristic luminescence spectral features of europium ions are present in the emission spectra of the hybrid material doped with Eu(TTA)(3)(.)phen.