115 resultados para signal reconstruction
Resumo:
Accurate measurement of transit time for acoustic wave between two sensors installed on two sides of a furnace is a key to implementing the temperature field measurement technique based on acoustical method. A new method for measuring transit time of acoustic wave based on active acoustic source signal is proposed in this paper, which includes the followings: the time when the acoustic source signal arrives at the two sensors is measured first; then, the difference of two arriving time arguments is computed, thereby we get the transit time of the acoustic wave between two sensors installed on the two sides of the furnace. Avoiding the restriction on acoustic source signal and background noise, the new method can get the transit time of acoustic wave with higher precision and stronger ability of resisting noise interference.
Resumo:
Recording with both parallel and orthogonal linearly polarized lights, polarization holographic storage in genetic mutant BR-D96N film is reported with both transmission type geometry and reflection type geometry. Polarization properties of diffraction light and scattering light are discussed for two different cases, parallel polarization recording and orthogonal polarization recording. It shows that, compared with recording with parallel polarization lights, orthogonal polarization holography can separate the diffraction light from the scattering noise, therefore improving the signal-to-noise ratio. It also shows that, compared with reconstruction with reference light, reconstruction with phase conjugated wave of the reference light can improve the signal-to-noise ratio of the reconstructed diffraction image, and also the wave-front aberration of the object light introduced by irregular phase object in the optical pass-way can also be corrected effectively, which ensures that the reconstructed diffraction image has a better fidelity. The preliminary angle-multiplexed volume holographic storage multiplexed by transmission type geometry and reflection type geometry is demonstrated in the BR-D96N film. Experiment shows that there is no cross-talk between the two pages of images except for some scattering noises.
Resumo:
Anisotropic gratings are recorded on bacteriorhodopsin films by two parallelly polarized beams, and the effect of the polarization orientation of the reconstructing beam on the diffraction efficiency kinetics is studied. A theoretical model for the diffraction efficiency kinetics of the anisotropic grating is developed by combining Jones-matrix and photochromic two-state theory. It is found that the polarization azimuth of the reconstructing beam produces a cosine modulation on the kinetics of the diffraction efficiency, being positive at the peak efficiency and negative for steady state. By adding auxiliary violet light during grating formation, the saturation of the grating can be restrained. As a result, the negative cosine modulation for the steady-state diffraction efficiency changes to a positive one. In addition, the steady-state diffraction efficiency is increased appreciably for all reconstructing polarization orientations. (c) 2008 Optical Society of America.
Resumo:
A rapid algorithm for phase and amplitude reconstruction from a single spatial-carrier interferogram is proposed by bringing a phase-shifting mechanism into reconstruction of a carrier-frequency interferogram. The algorithm reconstructs phase through directly obtaining and integrating its real-value derivatives, avoiding a phase unwrapping process. The proposed method is rapid and easy to implement and is made insensitive to the profile of the interferogram boundaries by choosing a suitable integrating path. Moreover, the algorithm can also be used to reconstruct the amplitude of the object wave expediently without retrieving the phase profile in advance. The feasibility of this algorithm is demonstrated by both numerical simulation and experiment. (c) 2008 Optical Society of America.
Resumo:
A novel algorithm of phase reconstruction based on the integral of phase gradient is presented. The algorithm directly derives two real-valued partial derivatives from three phase-shifted interferograms. Through integrating the phase derivatives, the desired phase is reconstructed. During the phase reconstruction process, there is no need for an extra rewrapping manipulation to ensure values of the phase derivatives lie in the interval [-pi, pi] as before, thus this algorithm can prevent error or distortion brought about by the phase unwrapping operation. Additionally, this algorithm is fast and easy to implement, and insensitive to the nonuniformity of the intensity distribution of the interferogram. The feasibility of the algorithm is demonstrated by both computer simulation and experiment.
Resumo:
SPIE