94 resultados para quantitative polymerase chain reaction
Resumo:
Although common carp is the major fish species in Asian and European aquaculture and many domestic varieties have occurred, there is a controversy about the origination of European domestic common carp. Some scientists affirmed that the ancestor of European domestic common carp was Danube River wild common carp, but others considered it might be Asian common carp. For elucidating origination of European domestic common carp, we chose two representative European domestic common carp strains (German mirror carp and Russian scattered scaled mirror carp) and one wild common carp strain of Cyprinus carpio carpio subspecies (Volga River wild common carp) and two Asian common carp strains, the Yangtze River wild common carp (Cyprinus carpio haematopterus) and traditionally domestic Xingguo red common carp, as experimental materials. ND5-ND6 and D-loop segments of mitochondrial DNA were amplified by polymerase chain reaction and analyzed through restriction fragment length polymorphism (RFLP) and sequencing respectively. The results revealed that HaeIII and DdeI digestion patterns of ND5-ND6 segment and sequences of control region were different between European subspecies C. carpio carpio and Asian subspecies C. carpio haematopterus. Phylogenetic analysis showed that German mirror carp and Russian scattered scaled mirror carp belonged to two subspecies, C. carpio carpio and C. carpio haematopterus, respectively. Therefore, there were different ancestors for domestic carp in Europe: German mirror carp was domesticated from European subspecies C. carpio carpio and Russian scattered scaled mirror carp originated from Asian subspecies C. carpio haematopterus.
Resumo:
AIM: To probe into the genetic susceptibility of HLA-DRB1 alleles to esophageal carcinoma in Han Chinese in Hubei Province. METHODS: HLA-DRB1 allele polymorphisms were typed by polymerase chain reaction with sequence-specific primers (PCR-SSP) in 42 unrelated patients with esophageal cancer and 136 unrelated normal control subjects and the associated HLA-DRB1 allele was measured by nucleotide sequence analysis with PCR.SAS software was used in statistics. RESULTS: Allele frequency (AF) of HLA-DRB1*0901 was significantly higher in esophageal carcinoma patients than that in the normal controls (0.2500 vs0.1397, P=0.028, the odds ratio 2.053, etiologic fraction 0.1282). After analyzed the allele nucleotide sequence of HLA-DRB1*0901 which approachs to the corresponded exon 2 sequence of the allele in genebank. There was no association between patients and controls in the rested HLA-DRB1 alleles. CONCLUSION: HLA-DRB1*0901 allele is more common in the patients with esophageal carcinoma than in the healthy controls, which is positively associated with the patients of Hubei Han Chinese. Individuals carrying HLA-DRB1*0901 may be susceptible to esophageal carcinoma.
Resumo:
Haemorrhage can be an epidemic and fatal condition in grass carp. It is known now that the Grass Carp Haemorrhage Virus (GCHV) triggers haemorrhage. Human lactoferrin (hLF) plays an important role in the non-specific immune system, making some organisms more resistant to some viruses. Sperm of grass carp was mixed with linearized pCAhLFc, which is a DNA construct containing an hLF cDNA and the promoter of common carp beta-actin gene, and then electroporated. Then, mature eggs were fertilized in vitro with the treated sperm cells. The fry were sampled and analyzed by polymerase chain reaction (PCR). Results indicated that the foreign gene had been transferred successfully into the cells of some fry. Under optimal electroporation conditions, the efficiency of gene transfer was as high as 46.8%. About 35.7% of treated 5-month-old grass carp contained foreign genes. Most transgenic fry demonstrated significant delays in onset of symptoms of haemerrhage after injection of GCHV, suggesting a significant positive relationship between hLF cDNA and levels of disease resistance (P < 0.01). Results suggest that transgenic grass carp could be bred for increased resistance to haemorrhage. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Linear DNA, consisting of a drug-resistance marker and long flanking sequences, was synthesized by one-step polymerase chain reaction after a three-piece ligating reaction. Chlorophyll synthesis genes, chlH and chIL in Synechocystis sp. PCC 6803, were replaced by a kanamycin-resistance marker through double recombinations with flanking homology regions. Under LAHG conditions, the chIL but not chlH mutant stopped chlorophyll synthesis, while both synthesized chlorophyll in the light.
Resumo:
The effects of estradiol (E(2)) on growth hormone (GH) production was investigated in gonad-intact female goldfish. It was first necessary to generate a specific antibody for use in immunocytochemistry, Western, and dot-blot analyses of GH production. To accomplish this, grass carp GH (gcGH) cDNA was cloned by the reverse transcription polymerase chain reaction (RT-PCR) and expressed in Echerichia coli and a specific polyclonal antibody to recombinant gcGH was generated in the rabbit. In Western blot, the anti-gcGH antibody specifically immunoreacted with recombinant gcGH, purified natural common carp GH, and with a single 21.5-kDa GH form from pituitary extracts of grass carp, common carp, goldfish, and zebrafish but not salmon, trout, or tilapia. Intraperitoneal injection of the recombinant gcGH enhanced the growth rates of juvenile common carp demonstrating biological activity of this GH preparation. Electron microscopic studies showed that the anti-gcGH-I antibody specifically reacted with GH localized in the secretory granules of the goldfish somatotroph. Using anti-gcGH-I in a dot-blot assay, it was found that in vivo implantation of solid silastic pellets containing E(2) (100 mu g/g body weight for 5 days) increased pituitary GH content by 150% in female goldfish. In a second, independent study employing a previously characterized anticommon carp GH antibody for radioimmunoassay, it was found that E(2) increased pituitary GH content by 170% and serum GH levels by approximately 350%. The E(2)-induced hypersecretion of GH and increase in pituitary GH levels was not associated with changes in steady-state pituitary GH mRNA levels, suggesting that this sex steroid may enhance GH synthesis at the posttranscriptional or translational level. Previous observations indicate that GH can stimulate ovarian E(2) production. The present results show that E(2) can in turn stimulate GH production, indicating the existence of a novel pituitary GH-ovarian feedback system in goldfish. (C) 1997 Academic Press.
Resumo:
介绍国内外连续流动式聚合酶链式反应生物芯片/微装置中脱氧核糖核酸样品的驱动控制技术进展,主要包括恒流泵(注射泵驱动和蠕动泵驱动)、旋转泵驱动、磁流体动力驱动以及自然对流驱动等。并对这几种驱动方式的优缺点作简要的讨论(引用文献43篇)。
A review of the recent progress of actuation control technique of DNA samples in micro-device of continuous-flow polymer ase chain reaction biochip,Covering mainly the years from 1985 tO 2006 was presented in this paper,pertaining especially to the actuation by constant flow pumps(actuated with injection pump and peristaltic pump),by rotary pump,and magnetohydrodynamic actuation and natural convection actuation;and a brief discussion On the merits and defects of various ways of actuation was also given(43 ref.cited).
Resumo:
小麦加工品质改良已成为我国小麦育种的主要目标之一。特别是我国加入WTO以后,对小麦产品的质量提出了更高的要求,小麦品质改良的任务将更加艰巨和重要,小麦胚乳蛋白是影响小麦加工品质性状的重要因素。因此,深入了解小麦胚乳蛋白对加工品质性状的影响及其分子基础,为品质改良提供理论依据和科学指导,对加速我国小麦品质育种和优质小麦生产具有重要意义。本研究选用在麦谷蛋白5个基因位点(Glu-A1、Glu-B1、Glu-D1、Glu-B3和Glu-D3)上均含不同等位基因的小麦品种99G45和京771及Pm97034和京771杂交F9代共164个麦谷蛋白纯合系,及228个中国推广普通小麦品种和高代育成品系为试材,研究了麦谷蛋白Glu-1和Glu-3位点基因等位变异对籽粒蛋白、湿面筋含量、Zeleny沉降值和SDS沉降值间的关系;本研究还利用小麦A、B和D基因组中低分子量麦谷蛋白亚基(LMW-GS)基因特异引物,通过PCR方法克隆了1个Glu-A3位点和3个Glu-B3位点LMW-GS基因片段,在此基础上分析了不同等位基因对品质造成差异的分子基础;另外,本研究对中国近年推广的部分品种和育成的高代品系资源的多样性进行了分析。现将主要研究结果简述如下: 1. 对来自三个麦区的148份材料的醇溶蛋白组成进行了分析,结果表明,各麦区醇溶蛋白模式具有较大差异。在ω区,A7、B、E、F、G、J、P、Q、S和U仅存在于西南秋播麦区;A3、M、N、R、W和X仅存在于黄淮特种麦区;K仅存在于北方冬麦区;A6是北方冬麦区出现频率最高的带型模式,而西南秋播麦区中D出现的频率最高。ω-区的E、H和M几种模式是以前国内外未曾报道的。且初步确定,这些模式对品质性状具有正效应。至于γ区,A、B、D、E和F在各区均有出现,其中B和E在各区出现的频率都很高,在26.1-39.6%之间。相反,H 仅出现在黄淮特种麦区,J仅限于西南秋播麦区。对于β-区醇溶蛋白,B型模式在所有区中都相当高,而模式A仅存在于第三区.对于α-区,模式A在Ⅲ区而模式D在Ⅱ区出现的频率很高。1BL.1RS易位系在中国小麦品种中出现频率高达41.2%,在I, II和Ⅲ麦区的出现频率分别为 45.5、43.5和35.2%。各生态区模式的差异可能是品种适应不同生态条件和人为选择的结果,但这有待进一步证明。由于醇溶蛋白位点(Gli-1)与LMW-GS位点(Glu-3)紧密连锁,本结果可为下面确定普通小麦LMW-GS等位基因变异所用。 2. 利用Gli-1与Glu-3的紧密连锁,以228个小麦品种/系为材料,首次对中国小麦品种麦谷蛋白亚基的6个位点进行综合分析,研究小麦籽粒蛋白与品质性状间的关系,结果表明6个高分子量(HMW)和低分子量(LMW)麦谷蛋白位点对蛋白质含量的效应大小为,Glu-D1>Glu-B3>Glu-A1=Glu-B1> Glu-A3=Glu-D3;对GMP含量的效应大小为, Glu-A3>Glu-B3>Glu-D1> Glu-B1>Glu-A1>Glu-D3;对湿面筋含量的效应大小为, Glu-B1>Glu-B3= Glu-D3>Glu-A3>Glu-A1>Glu-D1;对Zeleny沉降值的效应大小为, Glu-A1> Glu-B3>Glu-D3>Glu-D1>Glu-B1>Glu-A3;对SDS沉降值的效应大小为, Glu-B3>Glu-A1=Glu-D1=Glu-A3>Glu-D3>Glu-B1。对蛋白含量而言,各位点的最佳组合方式为1、17+18、5+10、Glu-A3e、Glu-B3g、Glu-D3b;对湿面筋含量而言,各位点的最佳组合方式为1、6+8、5+10、Glu-A3d、Glu-B3c、Glu-D3b;对Zeleny沉降值而言,各位点的最佳组合方式为N、17+18、5+10、Glu-A3d、Glu-B3d、Glu-D3b;对SDS沉降值而言,各位点的最佳组合方式为1、7+8、2.2+12、Glu-A3b、Glu-B3g、Glu-D3b。另外,分析了稀有亚基对5+12与2.2+12与品质性状的关系,认为5+12对品质有负效应,2.2+12对品质有正效应。在品质育种时,应对优异组合或优异亚基加以利用。 3. 首次利用重组自交系(RILs)为材料,研究麦谷蛋白亚基表达量与品质性状的关系,通过对重组自交系中各HMW-GS表达量的分析,认为,就单个亚基的表达量而言,7亚基最高;其次为2亚基、5亚基、12亚基和10亚基;亚基9和1的表达量最小;N亚基不表达。对成对出现的亚基对而言,x型和y型亚基的总表达量2+12>5+10>7+9>17+18。就单个亚基与品质性状的关系而言,仅有10亚基的表达量与蛋白含量的相关性达5%的显著水平,2亚基的表达量与湿面筋含量呈负相关,显著水平也达5%,其余单个亚基对品质性状均无显著影响;就x型/y型亚基的比例来看,2/12和5/10对湿面筋含量都有显著的负效应;对某一位点等位基因控制的亚基表达总量来看,2+12对SDS沉降值有显著负效应。另外,本研究得出:2+12的亚基对的负效应主要体现在2亚基上,且在同一位点上,x型亚基的表达量大于y型。所以推导稀有亚基组合2+10很可能也是劣质亚基。 4. 以 Glu-A1、Glu-B1、Glu-D1、Glu-B3和Glu-D3作为5个因素对99G45/京771和Pm97034/京771杂交后代的蛋白质含量和SDS沉降值进行多因素方差分析。结果表明,Glu-A1和Glu-D3对蛋白含量的加性效应达5%显著水平;Glu-D1 * Glu-D3对蛋白质含量的互作效应也达5%显著水平;其余位点的加性和互作效应对蛋白质含量的影响均不显著。对SDS 沉降值而言,Glu-D1的加性效应最大,贡献率为4.2 % ,达1 %显著水平,其次是Glu-B1位点,贡献率为3.3% ,达5%显著水平。其余位点对SDS 沉降值的加性和互作效应均未达5%显著水平。总体而言, 各位点对蛋白含量的效应大小为Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3;对SDS沉降值的效应大小为Glu-D1>Glu-B1> Glu-D3>Glu-A1> Glu-B3。Glu-D1和Glu-D3位点上等位基因变异对蛋白含量有显著或极显著影响,含Glu-D1d和Glu-D3 GD、Glu-D3 JD基因的株系分别比含Glu-D1a和Glu-D3 PD基因的株系有较高的蛋白含量;在该遗传背景下,麦谷蛋白各基因位点对蛋白含量的效应大小依次排列为:Glu-A1位点1>N;Glu-B1位点7+9>17+18>14+15;Glu-D1位点5+10>2+12;Glu-B3位点GB>JB>PB;Glu-D3位点GB>JB>PB。对SDS沉降值的效应大小依次排列为:Glu-A1位点1>N;Glu-B1位点7+9=17+18>14+15;Glu-D1位点5+10>2+12;Glu-B3位点GB>JB>PB;Glu-D3位点GB>JB>PB。所以,对蛋白含量和SDS沉降值均较好的组合为1,7+9,5+10,GB,GD。 5. 因为GB和PB对品质的效应有显著差异,选取LMW-GS位点特异扩增引物对京771、99G45和Pm97034的Glu-B3位点进行扩增,结果得到三个不一样的扩增片段(Genebank号为DQ539657-DQ539659),得到的基因片段与Genebank中已报道的同类序列高度同源。通过克隆片段组成的分析,发现对Pm97034的序列较京771和99G45段少一个7氨基酸的重复单元,这可能是它较另外两个片段对面筋强度影响小的主要原因;另外,在99G45的序列中,124位处出现L(亮氨酸)代替P(脯氨酸),158位处出现了T(苏氨酸)代换M(蛋氨酸),这可能是99G45Glu-B3位点序列对SDS沉降值的效应显著优于Pm97034的原因。 6.通过对RILs各位点同普通小麦品种(系)各位点与品质关系的比较,发现对SDS沉降值的效应,各位点在不同研究材料中是不同的,普通小麦中:Glu-B3>Glu-A1=Glu-D1=Glu-A3>Glu-D3>Glu-B1,RILs中:Glu-D1>Glu-B1> Glu-D3>Glu-A1> Glu-B3。利用重组自交系材料(完全排除了1BL/1RS易位干扰)所得到的结果与Gupta and MacRitchie (1994)所得结论一致。进一步证实了1BL/1RS易位对小麦品质的重要影响。对蛋白含量而言,普通小麦品种(系)中,Glu-D1>Glu-B3>Glu-A1=Glu-B1> Glu-A3=Glu-D3,RILs中,Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3,和对SDS沉降值的效应一样,推断在非1BL/1RS易位的情况下,各位点对其效应应为Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3。 对同一位点的等位基因而言,普通小麦和重组自交系中Glu-A1和Glu-D1上的等位基因对品质性状的贡献是一致的,但Glu-B1上的等位基因对SDS沉降值的贡献发生了变化,普通小麦中17+18>7+9,RILs中7+9>17+18,这可能也是1BL/1RS造成的。 Baking quality improved is one of the main object of wheat bread in China. The overall objective of the present studies was to increase the understanding about protein quality in wheat, i.e. to make it possible to improve the production of wheat with desired quality for different end-uses. With the analysis of gluten protein in RILs, 99G45/Jing 771 and Pm97034/Jing, and 228 wheat cultivars or lines in China, the correlations between glutenin compositions and protein content, glutenin macropolymer(GMP), wet gluten content, Zeleny sedimentation value and SDS sedimentation value contentand breadmaking quality were studied. Also a rapid and efficient detection method of geneticpolymorphism at Glu-B3 loci in wheat was established using polymerase chain reaction(PCR).The results obtained were as follows: 1. Cultivated Chinese wheat germplasm has been a valuable genetic resource in international plant breeding. Patterns of gliadin among cultivated Chinese accessions are unknown, despite the proven value and potential novelty. The objective of this work was to analyse the diversity within improved Chinese wheat germplasm. The electrophoretic banding patterns of gliadin in common wheat cultivars and advanced lines were determined by acid-polyacrylamide gel electrophoresis. For 148 leading commercial cultivars and promising advanced lines used in our study, 48 patterns were identified, 29 corresponding to ω-gliadin, 9 to γ-gliadin, 5 to β-gliadin and 5 to α-gliadin. The most frequent patterns were A6 in ω; B in γ; B in β and A in the region of α. 116 band types appeared in the148 samples: 94 accessions had unique gliadin types, and 22 gliadin types while not unique were found in 54 accessions. The gliadin patterns of Chinese wheat cultivars and lines greatly differed from the patterns of wheat lines from other countries. Three patterns, E, J, H, M, N and O in the ω-zone had not previously been reported. Three wheat zones,the Northern Winter Wheat Region, the Yellow and Huai Valley River valleys Winter Wheat Region and the Southwestern Winter Wheat Region,in China showed different frequencies in their gliadin patterns. This information can be used to monitor genetic diversity with Chinese wheat germplasm. 2. To analyse the relationship between the loci and characteristics quality, we utilized the 228 cultivars/lines. The results showed that : For protein content, Glu-D1 >Glu-B3>Glu-A1=Glu-B1>Glu-A3=Glu-D3. For GMP content, Glu-A3>Glu-B3 >Glu-D1>Glu-B1>Glu-A1>Glu-D3. For wet gluten content, Glu-B1>Glu-B3= Glu-D3>Glu-A3>Glu-A1>Glu-D1. For Zeleny sedimentation value, Glu-A1>Glu-B3> Glu-D3>Glu-D1>Glu-B1>Glu-A3, For SDS sedimentation value, Glu-B3>Glu-A1= Glu-D1= lu-A3>Glu-D3>Glu-B1。For protein content, the best combination of 6 loci is (1,17+18,5+10,Glu-A3e, Glu-B3g,Glu-D3b). For wet gluten content, the best combination of 6 loci is (1,6+8,5+10,Glu-A3d,Glu-B3c,Glu-D3b). For Zeleny sedimentation value, the best combination of 6 loci is (N,17+18,5+10,Glu-A3d, Glu-B3d, Glu-D3b). For SDS sedimentation value, the best combination of 6 loci is(7+8,2.2+12,Glu-A3b, Glu-B3g,Glu-D3b)。Additional, we analysed the relationship between the subunits 5+12 and 2.2+12, think that 5+12 was negative for quality, 2.2+12 is postive for quality. It should be effective utilized. 3. It’s the first time to utilize RILs to study the relationship between subunits expression quantity and characteristics quality. The results showed that: For single subunit, the expression quantity of 7 is the highest. Then the 2, 5, 12 and 10. The expression of subunit 9 and 1 is the lowest. Subunit N is not expressed. For subunits, the expression quantity of x type and y type are 2+12>5+10>7+9>17+18. The significant relation of 5% only showed between the expression quantity of subunit 10 and protein content. The relationship between expression quantity of others and characteristic quality was not significant. For x type/ytype, 2/12 and 5/10 is negative relation insignificant level. For the subunit(s) in a loci, Only 2+12 effect SDS sedimentation value negative in significant level. 4. With RILs 99G45/Jing 771 and Pm97034/Jing 771, we found that: The effective of Glu-A1, Glu-D3 and Glu-D1 * Glu-D3 for protein content is significant at 5% level. The effect of other loci for protein wre not significant. For SDS sedimentation value, the effect of Glu-D1is the highest, which contribution is 4.2 % .Then the Glu-B1, contribution is 3.3%. The effect of other loci for SDS sedimentationvalue were not significant. In total, for protein content: Glu-D3 > Glu-A1 > Glu-D1>Glu-B1>Glu-B3; for SDS sedimentationvalue: Glu-D1>Glu-B1> Glu-D3>Glu-A1>Glu-B3. The effect of alleles in Glu-D1 and Glu-D3 loci are significant at 1% or 5%. In Glu-A1, 1>N; Glu-B1, 7+9>17+18>14+15; Glu-D, 5+10>2+12; Glu-B3, GB>JB>PB; Glu-D3, GB>JB>PB. For SDS sedimentation, Glu-A1, 1>N; Glu-B1, 7+9=17+18>14+15; Glu-D1, 5+10>2+12; Glu-B3, GB>JB>PB; Glu-D3, GB>JB>PB. The best combinations for SDS sedimentation value is 1,7+9,5+10,GB,GD. 5. Because of the difference of GB and PB for SDS sedimentation value, we selected the specific primer for LMW-GS loci to amplified the Glu-B3 of Jing771, 99G45and Pm97034. We got 3 amplify fragment (Gene Bank accession number are DQ539657-DQ539659). We found that the fragment of Pm97034 were deleted a repetitive 7 amino acid domain, which is perhaps the reason effect the gluten strength. Furthermore, in the position 124 of sequence 99G45, L has been replaced with P. Position 158, T replaced M, which may be the reason why the Glu-B3 locus of 99G45 is prefer to Pm97034 when refer to SDS sedimentation value. 6. Comparing the results of RILs and common wheat, we found that perhaps just the1BL/1RS made the difference of loci in different accession.
Resumo:
毛壳菌属很多种类具有重要生防价值,其生防机理包括对植物病原真菌的重寄生作用、诱导植物产生抗病性、产生抗真菌活性的次生代谢产物等。迄今,学界对毛壳菌的研究主要集中在毛壳菌的生防机理,毛壳菌活性次生代谢产物的分离等方面。本研究致力于产抗生素的毛壳菌的种间原生质体融合,从产抗生素毛壳菌菌株的筛选开始,进而对产抗生素的角毛壳菌进行诱变选育,最终用产不同抗生素的角毛壳菌与球毛壳菌进行种间原生质体融合。主要有以下五方面研究结果。 1、毛壳菌抗真菌活性物质产生菌株的筛选:不同毛壳菌菌株发酵液采用琼脂扩散法对植物病原真菌进行抑菌活性试验,结果显示,菌株CH08和CH23的发酵液对芒果炭疽、苹果炭疽和马铃薯晚疫菌具有抑制作用。菌株CH16和CH17的发酵液对芒果炭疽菌、苹果炭疽菌有抑制作用。菌株CH21发酵液对辣椒炭疽菌和西瓜枯萎菌有抑制作用。经形态学研究,菌株CH08、CH16、CH17和CH23鉴定为球毛壳菌,菌株CH21鉴定为角毛壳菌。对角毛壳菌与球毛壳菌菌株发酵液抑菌谱比较,发现角毛壳菌与球毛壳菌发酵液具有明显不同的抑菌谱,表明角毛壳菌与球毛壳菌产生不同的抗真菌活性物质。 2、角毛壳菌(CH21)和球毛壳菌(CH08)原生质体制备和再生条件研究:考察了菌龄、酶浓度、稳渗剂及其浓度、酶解温度、酶解时间及再生培养基对原生质体制备和再生的影响。用菌龄为生长54 h的角毛壳菌菌丝,以0.06 M磷酸缓冲液(pH6.0)配制成含蜗牛酶15 mg/ml、溶壁酶10 mg/ml、蔗糖0.6 mol/L的酶解液,30℃酶解1.5 h,原生质体释放量2.02×107个/g;以PDA为再生培养基,0.7 mol/L的蔗糖再生稳渗剂,再生率可达51.45%。用菌龄为生长48 h的球毛壳菌菌丝,以0.06 M磷酸缓冲液(pH6.0)配制成含蜗牛酶15 mg/ml、溶壁酶10 mg/ml、蔗糖0.6 mol/L的酶解液,30℃酶解1 h,原生质体释放量达1.57×108个/g;以PDA为再生培养基,0.7 mol/L的蔗糖为再生稳渗剂,再生率可达41.48%。 3、角毛壳菌(CH21)原生质体紫外诱变选育:以CH21为出发菌株,制备原生质体进行紫外诱变,诱变条件为:15 w紫外灯,距离30 cm,照射90 s,致死率80%~85%。建立了诱变菌株初筛的双层平板筛选模型。经平板初筛和摇瓶复筛,获得一株突变菌株CH21-I-402,其发酵液抑菌活性较出发菌株提高18.3%。 4、抗性标记菌株的获得:菌株CH21-I-402和CH08抗生素药敏试验表明, CH21-I-402菌株对潮霉素有抗性、对G418(Geneticin)敏感,菌株CH08对潮霉素和G418都敏感。根癌农杆菌EHA105介导的新霉素磷酸转移酶基因转化球毛壳菌,经PCR检测,新霉素磷酸转移酶基因成功转化进菌株CH08-GR70,CH08-GR120。转化子对G418抗性提高3~4倍,对潮霉素仍然比较敏感。 5、以G418和潮霉素抗性为筛选标记的原生质体融合与融合菌株AFLP分析:制备角毛壳菌CH21-I-402和球毛壳菌CH08-GR70原生质体,以35%的PEG6000为助融剂进行原生质体融合,以65 μg/ml的潮霉素和60 μg/ml G418为抗性筛选标记,获得46个再生菌株。再生菌株连续传代5代后,再生菌株表现出多种形态类型。利用AFLP技术对再生菌株及亲本菌株基因组DNA分析表明,再生菌株PF1、PF26为融合菌株。抑菌活性测试表明,融合菌株PF26发酵液对芒果炭疽菌和苹果轮纹菌有强的抑制作用,且抑菌活性比亲本球毛壳菌明显提高。 Chaetomium spp. have great potentials as biocontrol agents against a range of plant pathogens on the basis of its mycoparasitism, induced plant disease resistance, production of antifungal metabolites, and so on. Previous researches on C. spp. mostly focused on the mechanisms of its biocontrol and the isolation of secondary metabolites. In this study, screening antifungal C. spp., mutation breeding of C. cupreum and interspecies protoplast fusion between C. cupreum and C. globosum were carried out, respectively. The corresponding results are as follows: Firstly, among more than 40 C. spp., the strains produced anti-fungal antibiotics were screened by agar diffusion experiments. Results showed that both CH08 and CH23 had inhibition against Colletotrichum gloeosporioides, Cladosporium fulvum, and Phytophthora infestans. Both CH16 and CH17 had inhibition against Colletotrichum gloeosporioides and Cladosporium fulvum. In addition, CH21 exhibited anti-fungal activity against Fusarium oxysporum f. sp niveum and Colletotrichum capsici. Furthermore, CH08, CH16, CH17 and CH23 were identified as C. globosum, CH21 was proved to be C. cupreum based on morphology. The comparison of the anti-fungal spectrum between C. cupreum and C. globosum, showed they could produce different antibiotics. Secondly, specified protocols for preparing and regenerating protoplasts from mycelia of C. cupreum CH21 and C. globosum CH08 were studied. The effects of the age mycelia, the concentration of enzyme, digestion temperature and time, kinds of osmotic stabilizer and regeneration medium on protoplasts preparation and regeneration were all optimized, respectively. In one protocol, with 15 mg/mL snailase, 10 mg/mL lywallzyme, 0.6 M sucrose, in 0.06 M phosphate buffer (pH6.0), and digested for 1.5 h at 30 ºC, 2.02×107 protoplasts from each gram mycelia were obtained from cultures of C. cupreum CH21 grown in potato dextrose broth (PDB) medium for 54 h. And when 0.7 M sucrose was used as osmotic stabilizer in the regeneration medium OPDA (potato dextrose agar with osmotic stabilize), the regeneration efficiency of protoplasts was 51.45%. In another protocol, with 15 mg/mL snailase, 10 mg/mL lywallzyme, 0.6 M sucrose, in 0.06 M phosphate buffer (pH6.0), and digested for 1 h at 30 ºC, 1.57×108 protoplasts from each gram mycelia were obtained from cultures of C. globosum CH08 grown in PDB for 48 h. And when 0.7 M sucrose was used as osmotic stabilizer in the regeneration medium OPDA, the regeneration efficiency of protoplasts was 41.48%. Thirdly, the mutagenesis conditions and secondary screening model of C. cupreum CH21 were explored. An 80% to 85% death rate could be achieved when the protoplasts of C. cupreum CH21 were irradiated by 15 w UV lamp from 30 cm distance for 90 s. In addition, the doublelayer plate’s method for the primary screening of high-producing antibiotics strains was established. A high yielding antibiotic mutant CH21-I-402 was obtained through the primary screening on plate and the secondary selection in Erlenmeyer flask, compared to the original CH21 strain, the antifungal activity of the mutant CH21-I-402 was increased by 18.3%. Fourth, the sensitivity to antibiotics of both C. cupreum CH21-I-402 and C. globusm CH08 was detected. Results showed C. cupreum CH21-I-402 was sensitive to G418 (Geneticin) (Gs) and resistant to Hygromycin B(Hr), and C. globusm CH08 was sensitive to both G418 (Geneticin) (Gs) and Hygromycin B(Hs). At the same time, neomycin phosphotransferase II (npt II) gene was transformed into C. globusm CH08(Gs, Hs) mediated by Agrobacterium tumefaciens EHA105, and the npt II gene was verified by polymerase chain reaction in resistance to G418 strains CH08-GR70 and CH08-GR120. The transformants still showed sensitive to Hygromycin B(Hs). Finally, a selection system for hybrids was set up by interspecies protoplast fusion between C. cupreum and C. globusm using dominant selective drug resistance markers. At first, protoplasts of C. cupreum CH21-I-402 (Hr, Gs) and C. globusm CH08-GR70 (Hs, Gr) were prepared, then the protoplasts were fused in the presence of 35% polyethylene glycol 6000 and regenerated on OPDA medium with 65 μg/ml Hygromycin B and 60μg/ml G418, at last 46 colonies with Hr and Gr were obtained. Even after 5 generations’ subculture, most of the colonies displayed significant difference in taxonomic characteristics with their parental strains. Regenerated strains PF1 and PF26 were confirmed as fusants by amplified fragment length polymorphisms analysis with the genomic DNA as the model. PF26 showed higher inhibitory activity against Colletotrichum gloeosporioides and Macrophoma kuwatsukai than that of the parental strain C. globusm.
Resumo:
自养硝化过程在自然界氮素循环和污水处理系统脱氮过程中起着关键作用。因此,了解有机碳对硝化的影响和硝化菌与异养菌之间的竞争对微生物生态学和污水处理系统设计都很重要。目前对氨氧化到硝酸盐氮过程的研究文献很多,但对亚硝酸盐氧化过程在异养菌的存在下如何受到有机碳影响的研究甚少。本文从生理生化指标、基因组学、蛋白组学三方面考察了在实验室条件下有机碳(乙酸钠)对硝化细菌和异养菌组成的混合菌群的硝化性能、菌群结构及代谢功能的变化的影响。 全文分为两大部分: 第一部分为乙酸钠对游离态硝化混合菌群的硝化性能和菌群结构的短期影响。混合菌株先在自养条件下进行连续培养,两个月后硝化速率达到20 mg N/(L·d);而后离心收集菌体进行批式实验。在批式反应器中,初始亚硝氮均为126mg N/ L,乙酸钠-C 与亚硝酸盐-N 的比分别为0,0.44,0.88,4.41,8.82。结果表明:在低C/N 比(0.44 和0.88)时,亚硝酸盐去除速率比C/N=0 下高,细菌呈现一次生长;而在高C/N 比(4.41 和8.82)时,出现连续的硝化反硝化,亚硝酸盐去除率仍比对照下高,细菌呈现二次生长。不同C/N 比下微生物群落明显不同,优势菌群从自养和寡营养细菌体系(包括亚硝酸盐氧化菌,拟杆菌门,α-变形菌纲,浮霉菌门和绿色非硫细菌下的一些菌株)过渡到异养和反硝化菌体系 (γ-变形菌纲的菌株尤其是反硝化菌Pseudomonas stutzeri 和P. nitroreducens 占主导)。 第二部分为乙酸钠对硝化混合菌群生物膜的硝化性能和菌群结构的长期影响。接种富集的硝化混合菌群于装有组合式填料的三角瓶中,于摇床中自养培养;两个月后填料上形成生物膜的硝化速率达到20 mg N/ (L·d);而后进行长期实验,每12 小时更换混合营养培养基(亚硝氮约200 mg N/ L,C/N 比同上)。结果显示:相较于C/N 比=0 时的亚硝酸盐氧化反应来说,低C/N 比出现了部分的反硝化,而高C/N 比则是几乎完全的反硝化。与对照比,C/N=0.44 时亚硝酸盐氧化速率并未受乙酸钠的影响,反而上升了,但C/N=0.88 时亚硝酸盐氧化速率有所下降。菌群结构分析表明自养对照与混合营养下微生物群落的不同;PCR-DGGE未检测出混合营养下硝化杆菌的存在,而显示异养菌尤其是反硝化菌的大量存 在。荧光定量PCR 结果表明随C/N 比上升,硝化杆菌数量从2.42 × 104 下降到1.34× 103 16S rRNA gene copies/ ng DNA,反硝化菌由0 增加至2.51 × 104 nosZgene copies/ ng DNA。SDS-PAGE 的结果表明不同C/N 比下的蛋白组较为复杂且呈现一定的差异性。 有机碳对亚硝氮氧化及微生物群落的影响很复杂,本文分别讨论了对游离态和生物膜固定态两种状态的混合菌群相应的短期和长期影响研究。研究发现,有机碳并非一定带来硝化的负影响,如果控制在适当的C/N 比范围,有机碳是有利于亚硝氮氧化的。这些发现阐明了有机碳和硝化反硝化的关系,填补了硝化微生物生态学上的空白,对污水处理系统中减少异养菌的影响并提高氮去除率有一定理论指导意义。 Nitrification plays a key role in the biological removal of nitrogen in both nature and wastewater treatment plant (WWTP). So, understanding of the effect of organic carbon on nitrification and the competition between nitrifying bacteria and heterotrophic bacteria is important for both microbial ecology and WWTP design and operation. Despite the fact that the nitrification process of ammonia to nitrate has been extensively investigated, it is not known how the process of nitrite oxidization is affected by organic carbon when heterotrophic bacteria are present. By measuring different physiological and biochemical parameters, as well as using genomic DNA and proteome analysis, we investigated the influence of organic (acetate) on nitrite oxidizing performance, community structure and metabolic function of nitrite-oxidizing and heterotrophic bacteria under laboratory conditions. The dissertation involves two parts: Part one deals with the effect of organic matter on functional performance and bacterial community shift of nitrite-oxidizing and heterotrophic bacteria under suspended state. The bacteria were prepared in a continuous-flow stirred reactor under autotrophic condition; after two months, the nitrification rate of the culture reached about 20 mg N/ (L·d); then the bacteria were harvested for the next batch experiments. The initial concentrations of nitrite were 126 ± 6 mg N/ L in all flasks, and sodium acetate (C) to nitrite (N) ratios were 0, 0.44, 0.88, 4.41, and 8.82, respectively. The results showed that at low C/N ratios (0.44 or 0.88), the nitrite removal rate was higher than that obtained under autotrophic condition and the bacteria had single growth phase, while at high C/N ratios (4.41 or 8.82), continuous aerobic nitrification and denitrification occurred besides higher nitrite removal rates, and the bacteria had double growth phases. The community structure of total bacteria strikingly varied with the different C/N ratios; the dominant populations shifted from autotrophic and oligotrophic bacteria (NOB, and some strains of Bacteroidetes, Alphaproteobacteria, Actinobacteria, and green nonsulfur bacteria) to heterotrophic and denitrifying bacteria (strains of Gammaproteobacteria, especially Pseudomonas stutzeri and P. nitroreducens). Part two describes the influence of acetate on nitrite oxidizing performance, community structure and metabolic function of nitrite-oxidizing and heterotrophic bacteria in biofilms. Bacterial enrichments was transferred into flasks with polypropylene carriers and cultured under agitated and autotrophic condition. After two month, the biofilms grown on the carriers had a nitrification rate of about 20 mg N/ (L·h); then the biofilms were refreshed with mixotrophic medium (nitrite were 200 mg N/ L in all flasks, and C/N ratios was the same as above) every 12 h. the results show: normal nitrite oxidization reactions were performed when C/N = 0, but nitrite oxidization and partial denitrification occurred with low C/N ratios (0.44 or 0.88). At high C/N ratios (4.41 or 8.82), we mainly observed denitrification. In contrast to C/N = 0, the nitrite oxidization rate was unaffected when C/N = 0.44, but decreased with C/N = 0.88. The structure of bacterial communities varied significantly between autotrophic and mixotrophic conditions. Nitrobacter was hard to detect by PCR-DGGE while heterotrophs and especially denitrifiers were in the majority under mixotrophic conditions. Real-time PCR indicated that the Nitrobacter population decreased from 2.42 × 104 to 1.34 × 103 16S rRNA gene copies/ ng DNA, while the quantity of denitrifiers obviously increased from 0 to 2.51×104 nosZ gene copies/ ng DNA with an increasing C/N ratio. SDS-PAGE indicated the complexity of and a certain difference between the proteome of nitrite-oxidizing and heterotrophic bacteria at different C/N ratios. We conclude that the influence of organic matter on nitrite oxidation and the community structure of NOB and heterotrophic bacteria is complex. In this dissertation, we focused on how sodium acetate influenced the system both under suspended state and in biofilms. We observed that acetate did not necessarily have a negative impact on nitrification. Instead, an appropriate amount of acetate benefited both nitrite oxidization and denitrification. These findings provide a greater understanding about the relationship between organics and nitrification; they fill the gaps in the field of microbial ecology of nitrifying bacteria; they also provide insight into how to minimize the negative impact of heterotrophic bacteria and maximize the benefit of nitrogen removal in biological treatment systems.
Resumo:
To determine whether adenovirus-mediated wild-type p53 transfer after radiotherapy could radiosensitize non-small-cell lung cancer (NSCLC) cells to subclinical-dose carbon-ion beam (C-beam), H1299 cells were exposed to a C-beam or -ray and then infected with 5 MOI of AdCMV-p53 or GFP (C-beam or -ray with p53 or GFP).Cell cycle was detected by flow cytometric analysis. The apoptosis was examined by a fluorescent microscope with DAPI staining. DNA fragmentation was monitored by the TUNEL assay. P53 mRNA was detected by reverse-transcriptase polymerase chain reaction. The expression of p53, MDM2, and p21 was monitored by Western blot. Survival fractions were determined by colony-forming assay. The percentages of G1-phase cells in C-beam with p53 increased by 8.2%–16.0%, 5.2%–7.0%, and 5.8%–18.9%, respectively, compared with C-beam only, -ray with p53, or p53 only. The accumulation of G2-phase cells in C-beam with p53 increased by 5.7%–8.9% and 8.8%–14.8%, compared with those in -ray with p53 or p53 only, respectively. The percentage of apoptosis for C-beam with p53 increased by 7.4%–19.1%, 5.8%–11.7%, and 5.2%–19.2%, respectively, compared with C-beam only, -ray with p53, or p53 only. The level of p53 mRNA in C-beam with p53 was significantly higher than that in p53 only. The expression level of p53 and p21 in C-beam with p53 was significantly higher than that in both C-beam with GFP and p53 only. The survival fractions for C-beam with p53 were significantly less than those for the other groups (p 0.05). The data suggested that AdCMV-p53 transfer could more efficiently radiosensitize H1299 cells to subclinical-dose C-beam irradiation through the restoration of p53 function.
Resumo:
We have developed a new experimental system based on a microfluidic chip to determine severe acute respiratory syndrome coronavirus (SARS-Cov). The system includes a laser-induced fluorescence microfluidic chip analyzer, a glass microchip for both polymerase chain reaction (PCR) and capillary electrophoresis, a chip thermal cycler based on dual Peltier thermoelectric elements, a reverse transcription-polymerase chain reaction (RT-PCR) SARS diagnostic kit, and a DNA electrophoretic sizing kit. The system allows efficient cDNA amplification of SARS-CoV followed by electrophoretic sizing and detection on the same chip. To enhance the reliability of RT-PCR on SARS-CoV detection, duplex PCR was developed on the microchip. The assay was carried out on a home-made microfluidic chip system. The positive and the negative control were cDNA fragments of SARS-CoV and parainfluenza virus, respectively. The test results showed that 17 positive samples were obtained among 18 samples of nasopharyngeal swabs from clinically diagnosed SARS patients. However, 12 positive results from the same 18 samples were obtained by the conventional RT-PCR with agarose gel electrophoresis detection. The SARS virus species can be analyzed with high positive rate and rapidity on the microfluidic chip system.
Resumo:
The most biological diversity on this planet is probably harbored in soils. Understanding the diversity and function of the microbiological component of soil poses great challenges that are being overcome by the application of molecular biological approaches. This review covers one of many approaches being used: separation of polymerase chain reaction (PCR) amplicons using denaturing gradient gel electrophoresis (DGGE). Extraction of nucleic acids directly from soils allows the examination of a community without the limitation posed by cultivation. Polymerase chain reaction provides a means to increase the numbers of a target for its detection on gels. Using the rRNA genes as a target for PCR provides phylogenetic information on populations comprising communities. Fingerprints produced by this method have allowed spatial and temporal comparisons of soil communities within and between locations or among treatments. Numerous samples can be compared because of the rapid high throughput nature of this method. Scientists now have the means to begin addressing complex ecological questions about the spatial, temporal, and nutritional interactions faced by microbes in the soil environment.
Resumo:
Terminal restriction fragment length polymorphism (T-RFLP) analysis is a polymerase chain reaction (PCR)-fingerprinting method that is commonly used for comparative microbial community analysis. The method can be used to analyze communities of bacteria, archaea, fungi, other phylogenetic groups or subgroups, as well as functional genes. The method is rapid, highly reproducible, and often yields a higher number of operational taxonomic units than other, commonly used PCR-fingerprinting methods. Sizing of terminal restriction fragments (T-RFs) can now be done using capillary sequencing technology allowing samples contained in 96- or 384-well plates to be sized in an overnight run. Many multivariate statistical approaches have been used to interpret and compare T-RFLP fingerprints derived from different communities. Detrended correspondence analysis and the additive main effects with multiplicative interaction model are particularly useful for revealing trends in T-RFLP data. Due to biases inherent in the method, linking the size of T-RFs derived from complex communities to existing sequence databases to infer their taxonomic position is not very robust. This approach has been used successfully, however, to identify and follow the dynamics of members within very simple or model communities. The T-RFLP approach has been used successfully to analyze the composition of microbial communities in soil, water, marine, and lacustrine sediments, biofilms, feces, in and on plant tissues, and in the digestive tracts of insects and mammals. The T-RFLP method is a user-friendly molecular approach to microbial community analysis that is adding significant information to studies of microbial populations in many environments.
Resumo:
A number of methods are available for those researchers considering the addition of molecular analyses of ectomycorrhizal (EcM) fungi to their research projects and weighing the various approaches they might take. Analyzing natural EcM fungal communities has traditionally been a highly skilled, time-consuming process relying heavily on exacting morphological characterization of EcM root tips. Increasingly powerful molecular methods for analyzing EcM communities make this area of research available to a much wider range of researchers. Ecologists can gain from the body of work characterizing EcM while avoiding the requirement for exceptional expertise by carefully combining elements of traditional methods with the more recent molecular approaches. A cursory morphological analysis can yield a traditional quantification of EcM fungi based on tip numbers, a unit with functional and historical significance. Ectomycorrhizal root DNA extracts may then be analyzed with molecular methods widely used for characterizing microbiota. These range from methods applicable only to the simple mixes resulting from careful morphotyping, to community-oriented methods that identify many types in mixed samples as well as provide an estimate of their relative abundances. Extramatrical hyphae in bulk soil can also be more effectively studied, extending characterization of EcM fungal communities beyond the rhizoplane. The trend toward techniques permitting larger sample sets without prohibitive labor and time requirements will also permit us to more frequently address the issues of spatial and temporal variability and better characterize the roles of EcM fungi at multiple scales.
Resumo:
Polychlorinated biphenyls (PCBs) are persistent environmental contaminants that have documented neurological effects in children exposed in utero. To better define neuronally linked molecular targets during early development, zebrafish embryos were exposed to Aroclor 1254, a mixture of PCB congeners that are common environmental contaminants. Microarray analysis of the zebrafish genome revealed consistent significant changes in 38 genes. Of these genes, 55% (21) are neuronally related. One gene that showed a consistent 50% reduction in expression in PCB-treated embryos was heat-shock protein 70 cognate (Hsc70). The reduction in Hsc70 expression was confirmed by real-time polymerase chain reaction (PCR), revealing a consistent 30% reduction in expression in PCB-treated embryos. Early embryonic exposure to PCBs also induced structural changes in the ventro-rostral cluster as detected by immunocytochemistry. In addition, there was a significant reduction in dorso-rostral neurite outgrowth emanating from the RoL1 cell cluster following PCB exposure. The serotonergic neurons in the developing diencephalon showed a 34% reduction in fluorescence when labeled with a serotonin antibody following PCB exposure, corresponding to a reduction in serotonin concentration in the neurons. The total size of the labeled neurons was not significantly different between treated and control embryos, indicating that the development of the neurons was not affected, only the production of serotonin within the neurons. The structural and biochemical changes in the developing central nervous system following early embryonic exposure to Aroclor 1254 may lead to alterations in the function of the affected regions.