133 resultados para polycyclic aromatic hydrocarbon
Resumo:
Aryl hydrocarbon (Ah) receptor (Ah-agonist) effects of environmental samples containing polychlorinated aromatic hydrocarbons were evaluated using a 7-ethoxyresorufin-O-deethylase (FROD) assay of a primary hepatocyte culture from grass carp (Ctenopharyngodon idellus). The results were compared with those obtained from the assay using the rat hepatoma cell line H4IIE and chemical analysis using high-resolution gas chromatography/high-resolution mass spectrometry (HRGC/HRMS). A dose-response relationship was observed between the EROD activities, either from primary hepatocyte culture assay or from H4IIE assay, and concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The results showed that the assay based on the H4IIE cell line (EC50 = 0.83 mug/mL) is more sensitive to TCDD than the assay based on primary hepatocyte Culture (EC50 = 9.7 pg/mL). In tests of environmental samples, the results from the assay using primary hepatocyte culture were comparable to those from the assay using the H4IIE cell line and chemical analysis of concentrations of mixtures of polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF). The lack of a change in the activities of glutathione-S-transferase (GST) and lactate dehydrogenase (LDH) in cell culture upon exposure to TCDD indirectly indicates that the compound is persistent to biodegradation in the cell culture system. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
The temperature dependence of photoluminescence (PL) from a-C:H film deposited by CH3+ ion beam has been performed and an anomalous behavior has been reported. A transition temperature at which the PL intensity, peak position and full width at the half maximum change sharply was observed. It is proposed that different structure units. at least three, are responsible for such behavior. Above the transition point. increasing temperature will lead to the dominance of non-radiative recombination process, which quenches the PL overall and preferentially the red part, Possible emission mechanisms have been discussed. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Here we reported the fatty-acids and their δ 13C values in seep carbonates collected from Green Canyon lease block 185 (GC 185; Sample GC-F) at upper continental slope (water depth: ∼540 m), and Alaminos Canyon lease block 645 (GC 645; Sample AC-E) at lower continental slope (water depth: ∼2200 m) of the Gulf of Mexico. More than thirty kinds of fatty acids were detected in both samples. These fatty acids are maximized at C16. There is a clear even-over-odd carbon number predominance in carbon number range. The fatty acids are mainly composed of n-fatty acids, iso-/anteiso-fatty acids and terminally branched odd-numbered fatty acids (iso/anteiso). The low δ 13C values (−39.99‰ to.32.36‰) of n-C12:0, n-C13:0, i-C14:0and n-C14:0 suggest that they may relate to the chemosynthetic communities at seep sites. The unsaturated fatty acids n-C18:2 and C18:1Δ9 have the same δ 13C values, they may originate from theBeggiatoa/Thioploca. Unlike other fatty acids, the terminally branched fatty acids (iso/anteiso) show lowerδ 13C values (as low as −63.95‰) suggesting a possible relationship to sulfate reducing bacteria, which is common during anaerobic oxidation of methane at seep sites.
Resumo:
Two types of SiO2 with different mesopore size and HZSM-5 zeolite were used to prepare hybrid supported cobalt-based catalysts. The textual and structural properties of the catalysts were studied using N-2 physisorption, X-ray diffraction (XRD), and H-2 temperature-programmed reduction (TPR) techniques. Fischer-Tropsch synthesis (FTS) performances of the catalysts were carried out in a fixed-bed reactor. The combination effects of the meso- and micropores of the supports as well as the interaction between supports and cobalt particles on FTS activity are discussed. The results indicate that the catalyst supported on the tailor-made SiO2 and HZSM-5 hybrid maintained both meso- and micropore pores during the preparation process without HZSM-5 particles agglomerating. The mesopores provided quick mass transfer channels, while the micropores contributed to high metal dispersion and accelerated hydrocracking/hydroisomerization reaction rate. High CO conversion of 83.9% and selectivity to gasoline-range hydrocarbons (C-5-C-12) of 55%, including more than 10% isoparaffins, were achieved simultaneously on this type of catalyst.
Resumo:
An efficient method for the catalytic reduction of aromatic nitro compounds to the corresponding aromatic amines is reported. In the presence of selenium as a catalyst, the aromatic nitro compounds are quantitively reduced by CO/H2O to form the corresponding amines under atmospheric pressure. The reduction occurs in high selectivity regardless of other reducible functionalities present on the aromatic ring. There exists a phase transfer process of the catalyst selenium in the reaction. (C) 2004 Elsevier B.V. All rights reserved.