164 resultados para plasma heating by laser
Resumo:
An analytical fluid model is proposed for the generation of strong quasistatic magnetic fields during normal incidence of a short ultraintense Gaussian laser pulse with a finite spot size on an overdense plasma. The steepening of the electron density profile in the originally homogeneous overdense plasma and the formation of electron cavitation as the electrons are pushed inward by the laser are included self-consistently. It is shown that the appearance of the cavitation plays an important role in the generation of quasistatic magnetic fields: the strong plasma inhomogeneities caused by the formation of the electron cavitation lead to the generation of a strong axial quasistatic magnetic field B-z. In the overdense regime, the generated quasistatic magnetic field increases with increasing laser intensity, while it decreases with increasing plasma density. It is also found that, in a moderately overdense plasma, highly intense laser pulses can generate magnetic fields similar to 100 MG and greater due to the transverse linear mode conversion process.
Resumo:
A novel composite coating was synthesized by laser alloying of zirconium nanoparticles on an austenite stainless steel surface using a pulsed Nd:YAG laser. The coating contained duplex microstructures comprising an amorphous phase and an austenitic matrix. A discontinuous zirconium-containing region formed at a depth of 16 mum below the surface. The amorphous phase was present in the zirconium-rich region, with the composition of zirconium ranging from 7.8 to 14.5 at. pet. The formation of the amorphous phase was attributed to the zirconium addition. The hardness, corrosion, and wear-corrosion resistance of the irradiated coating were evidently enhanced compared to those of the stainless steel.
Resumo:
The present study is focused on improvement of the adhesion properties of the interface between plasma-sprayed coatings and substrates by laser cladding technology (LCT), Within the laser-clad layer there is a gradient distribution in chemical composition and mechanical properties that has been confirmed by SEM observation and microhardness measurement. The residual stress due to mismatches in thermal and mechanical properties between coatings and substrates can be markedly reduced and smoothed out. To examine the changes of microstructure and crack propagation in the coating and interface during loading, the three-point bending test has been carried out in SEM with a loading device. Analysis of the distribution of shear stress near the interface under loading has been made using the FEM code ANSYS, The experimental results show clearly that the interface adhesion can be improved with LCT pretreatment, and the capability of the interface to withstand the shear stress as well as to resist microcracking has been enhanced.
Resumo:
A self-consistent theory of plasma response to a single laser beam is proposed. The driving pump is not viewed as invariant during its interaction with the plasmas. Its modulation by the plasmas has an obvious influence on the strength of the wakefield behind the pulse. This suggests that the compression of the low-intensity pulse by the plasmas might be a possible way to excite largae-amplitude wakefield. (C) 2003 American Institute of Physics.
Resumo:
Control of multiple filamentation by laser-induced microlens effect due to a nonlinear interaction of two overlapping laser beams inside a glass plate was demonstrated. Individual or multiple spots on the white light pattern which is a product of multiple filamentation through a mesh can be switched on and off with a very high contrast ratio on a femtosecond time scale. This phenomenon can find applications such as ultrafast optical switch and high-speed sampling. (C) 2005 American Institute of Physics.
Resumo:
利用解析的方法研究了非相对论线偏振激光与等离子体相互作用中的J×B加热吸收机理,建立了一种包含两类有质动力效应在内的自洽理论.探讨了密度轮廓修正下的J×B加热机理,给出了相应的吸收系数随激光场强度变化的关系曲线.研究发现,当激光场强度A0=20时,J×B加热所导致的吸收系数fabs约为2.8%.
Resumo:
Conical emission is investigated for Ti:sapphire femtosecond laser pulses propagating in water. The colored rings can be observed in the forward direction due to the constructive and destructive interference of transverse wavevector, which are induced by the spatio-temporal gradient of the free-electron density. With increasing input laser energy, due to filamentation and pulse splitting induced by the plasma created by multiphoton excitation of electrons from the valence band to the conduction band, the on-axis spectrum of the conical emission is widely broadened and strongly modulated with respect to input laser spectrum, and finally remains fairly constant at higher laser energy due to intensity clamping in the filaments.
Resumo:
This paper deals with the distribution of generated microcrystallites in borate glass irradiated by 120 fs laser pulses at a central wavelength of 800 nm. Raman spectroscopy is used to investigate the distribution of the high and low temperature phases of barium metaborate crystals generated in the borate glass. In combination with a microexplosion model, bond-breaking induced by laser irradiation is served as the origin of the formation of BBO crystals. Depending on the laser fluence and cooling conditions, the distribution mechanisms have been discussed. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
To understand mechanisms underlying laser-induced damage of BK7 and fused silica, we calculate the temperature field of the substrates with CO2 laser irradiating at a given laser power and beam radius. We find that the two glasses show different thermal behaviors. A model is developed for estimating the time t to heat the surface of the substrates up to a particular temperature T with cw CO2 laser irradiation. We calculate theoretically the duration t that the samples are irradiated, from the beginning to visual catastrophic damage, with the assumption of damage threshold determined by the critical temperature. The duration t that the samples are irradiated, from the beginning to visual catastrophic damage, is investigated experimentally as well. Here we take the melting point or softening point as the critical temperature, given the thermomechanical coupling properties, which is enough to cause damage for BK7. Damage features are characterized by the sound of visual cracks. Finally, we calculate stresses induced by laser heating. The analysis of stress indicates that the damage of BK7 is due to the stresses induced by laser heating. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
To understand mechanisms underlying laser-induced damage of BK7 and fused silica, we calculate the temperature field of the substrates with CO2 laser irradiating at a given laser power and beam radius. We find that the two glasses show different thermal behaviors. A model is developed for estimating the time t to heat the surface of the substrates up to a particular temperature T with cw CO2 laser irradiation. We calculate theoretically the duration t that the samples are irradiated, from the beginning to visual catastrophic damage, with the assumption of damage threshold determined by the critical temperature. The duration t that the samples are irradiated, from the beginning to visual catastrophic damage, is investigated experimentally as well. Here we take the melting point or softening point as the critical temperature, given the thermomechanical coupling properties, which is enough to cause damage for BK7. Damage features are characterized by the sound of visual cracks. Finally, we calculate stresses induced by laser heating. The analysis of stress indicates that the damage of BK7 is due to the stresses induced by laser heating. (c) 2005 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The thermal stability of InN in the growth environment in metalorganic chemical vapor deposition was systematically investigated in situ by laser reflectance system and ex situ by morphology characterization, X-ray diffraction and X-ray photoelectron spectroscopy. It was found that InN can withstand isothermal annealing at temperature as high as 600 degrees C in NH3 ambient. While in N-2 atmosphere, it will decompose quickly to form In-droplets at least at the temperature around 500 degrees C, and the activation energy of InN decomposition was estimated to be 2.1 +/- 0.1 eV. Thermal stability of InN when annealing in NH3 ambient during temperature altering would be very sensitive to ramping rate and NH3 flow rate, and InN would sustain annealing process at small ramping rate and sufficient supply of reactive nitrogen radicals. Whereas In-droplets formation was found to be the most frequently encountered phenomenon concerning InN decomposition, annealing window for conditions free of In-droplets was worked out and possible reasons related are discussed. In addition, InN will decompose in a uniform way in the annealing window, and the decomposition rate was found to be in the range of 50 and 100 nm/h. Hall measurement shows that annealing treatment in such window will improve the electrical properties of InN. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Er-Si-O (Er2SiO5) crystalline films are fabricated by the spin-coating and subsequent annealing process. The fraction of erbium is estimated to be 21.5 at% based on Rutherford backscattering measurement. X-ray diffraction pattern indicates that the Er-Si-O films are similar to Er2SiO5 compound in the crystal structure. The fine structure of room-temperature photoluminescence of Er3+-related transitions suggests that Er has a local environment similar to the Er-O-6 octahedron. Our preliminary results show that the intensity of 1.53 mu m emission is enhanced by a factor of seven after nitrogen plasma treatment by NH3 gas with subsequent post-annealing. The full-width at half-maximum of 1.53 pm emission peak increases from 7.5 to 12.9 nm compared with that of the untreated one. Nitrogen plasma treatment is assumed to tailor Er3+ local environment, increasing the oscillator strength of transitions and thus the excitation/emission cross-section. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The strong absorption of gold nanoparticles in the visible spectral range allows the localized generation of heat in a volume of only a few tens of nanometer. The efficient conversion of strongly absorbed light by plasmonic gold nanoparticles to heat energy and their easy bioconjugation suggest that the gold nanoparticles can be used as selective photothermal agents in molecular cell targeting. The selective destruction of alkaline phosphatase, the permeabilization of the cell membrane and the selective killing of cells by laser irradiating gold nanoparticles were demonstrated. The potential of using this selective technique in molecularly targeted photothermal therapy and transfection is discussed.
Resumo:
To investigate the possible failure modes of the thermal barrier coating (TBC) used to protect the scramjet combustion chamber, the local heating via laser beam irradiation was utilized to simulate the service condition of high thermal flux and high temperature gradient. Firstly, the experimental method and process were described and the typical fracture morphology of the TBC under test were provided. Then, the theoretical and finite element modeling were carried out to study the temperature, deformation and stresses of the specimen when the top ceramic coat was subjected to local heating, and to demonstrate the mechanism on the failure of the TBC. It is revealed that the interface delamination shall appear and ultimately lead to the failure of the TBC under such thermal loading of local quick heating. According to the outcome of this study, the driving force of the interface delamination is influenced greatly by the key structural parameters and performance matching. Moreover, by utilizing the rules of the effects of these parameters on the fracture driving force, there is some possibility for the designer to optimize the performances of the TBC.
Resumo:
Plasma-sprayed 8YSZ (zirconia stabilized with 8 wt% yttria)/NiCoCrAlYTa thermal barrier coatings (TBCs) were laser-glazed using a continuous-wave CO2 laser. Open pores within the coating surface were eliminated and an external densified layer was generated by laser-glazing. The hot corrosion resistances of the plasma-sprayed and laser-glazed coatings were investigated. The two specimens were exposed for the same period of 100 h at 900 degrees C to a salt mixture of vanadium pentoxide (V2O5) and sodium sulfate (Na2SO4). Serious crack and spallation occurred in the as-sprayed coating, while the as-glazed coating exhibited good hot corrosion behavior and consequently achieved a prolonged lifetime. The results showed that the as-sprayed 8YSZ coating achieved remarkably improved hot corrosion resistance by laser-glazing.