191 resultados para p-type conductivity
Resumo:
In situ doping for growth of n-p-n Si/SiGe/Si heterojuction bipolar transistor (HBT) structural materials in Si gas source molecular beam epitaxy is investigated. We studied high n-type doping kinetics in Si growth using disilane and phosphine, and p-type doping in SiGe growth using disilane, soild-Ge, and diborane with an emphasis on the effect of Ge on B incorporation. Based on these results, in situ growth of n-p-n Si/SiGe/Si HBT device structure is demonstrated with designed structural and carrier profiles, as verified from characterizations by X-ray diffraction, and spreading resistance profiling analysis. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Temperature-dependent photoluminescence characteristics of non-polar m-plane ZnO and ZnMgO alloy films grown by metal organic chemical vapor deposition have been studied. The enhancement in emission intensity caused by localized excitons in m-plane ZnMgO alloy films was directly observed and it can be further improved after annealing in nitrogen. The concentration of Zn vacancies in the films was increased by alloying with Mg, which was detected by positron annihilation spectroscopy. This result is very important to directly explain why undoped Zn1-xMgxO thin films can show p-type conduction by controlling Mg content, as discussed by Li [Appl. Phys. Lett. 91, 232115 (2007)].
Resumo:
Ultraviolet and X-ray photoemission spectroscopies (UPS and XPS) have been employed to SnO2 and its interface with P-type a-SiCx:H. The HeI valence band spectra of SnO2 show that the valence band maximum (VBM) shifts from 4.7 eV to 3.6 eV below the Fermi level (E(F)), and the valence band tail (VBT) extends up to the E(F), as a consequence of H-plasma treatments. The work function difference between SnO2 and P a-SiCx:H is found to decrease from 0.98 eV to 0.15 eV, owing to the increase of the work function of the treated SnO2. The reduction of SnO2 to metallic Sn is also observed by XPS profiling, and it is found that this leads to a wider interfacial region between the treated SnO2 and the successive growth of P a-SiCx:H.
Resumo:
We realized ambipolar transport behavior in field-effect transistors by using p-p isotype heterojunction films as active layers, which consisted of two p-type semiconductor materials, 2, 2'; 7', 2 ''-terphenanthrenyl (Ph3) and vanadyl-phthalocyanine (VOPc). The ambipolar charge transport was attributed to the interfacial electronic structure of Ph3-VOPc isotype heterojunction, and electrons and holes were accumulated at both sides of the narrow band-gap VOPc and the wide band-gap Ph3, respectively, which were confirmed by the capacitance-voltage relationship of metal-oxide-semiconductor diodes. The accumulation thickness of carriers was also obtained by changing the heterojunction active layer thickness. Furthermore, the results indicate that the device performance is relative to interfacial electronic structures.
Resumo:
N-type organic thin-film transistors (OTFTs) employing hexadecafluorophthalocyaninatocopper (F16CuPc) as active layer and p-type copper phthalocyanine (CuPc) as buffer layer are demonstrated. The highest field-effect mobility is 7.6x10(-2) cm(2)/V s. The improved performance was attributed to the decrease of contact resistance due to the introduction of highly conductive F16CuPc/CuPc organic heterojunction. Therefore, current method provides an effective path to improve the performance of OTFTs.
Resumo:
The catalytic performances of Mn-based catalysts have been investigated for the oxidative dehydrogenation of both ethane (ODE) and propane (ODP). The results show that a LiCl/MnOx/PC (Portland cement) catalyst has an excellent catalytic performance for oxidative dehydrogenation of both ethane and propane to ethylene and propylene, more than 60% alkanes conversion and more than 80% olefins selectivity could be achieved at 650 degrees C. In addition, the results indicate that Mn-based catalysts belong to p-type semiconductors, the electrical conductivity of which is the main factor in influencing the olefins selectivity. Lithium, chlorine and PC in the LiCl/MnOx/PC catalyst are all necessary components to keep the excellent catalytic performance at a low temperature.
Resumo:
Ferromagnetic semiconductor MnxGa1-xSb single crystals were fabricated by Mn-ions implantation, deposition, and the post annealing. Magnetic hysteresis-loops in the MnxGa1-xSb single crystals were obtained at room temperature (300 K). The structure of the ferromagnetic semiconductor MnxGa1-xSb single crystal was analyzed by Xray diffraction. The distribution of carrier concentrations in MnxGa1-xSb was investigated by electrochemical capacitance- voltage profiler. The content of Mn in MnxGa1-xSb varied gradually from x = 0.09 near the surface to x = 0 in the wafer inner analyzed by X-ray diffraction. Electrochemical capacitance-voltage profiler reveals that the concentration of p-type carriers in MnxGa1-xSb is as high as 1 1021 cm-3, indicating that most of the Mn atoms in MnxGa1-xSb take the site of Ga, and play a role of acceptors.
Resumo:
We report on the realization of ZnO homojunction light-emitting diodes (LEDs) fabricated by metalorganic chemical vapor deposition on (0001) ZnO bulk substrate. The p-type ZnO epilayer was formed by nitrogen incorporation using N2O gas as oxidizing and doping sources. Distinct electroluminescence (EL) emissions in the blue and yellow regions were observed at room temperature by the naked eye under forward bias. The EL peak energy coincided with the photoluminescence peak energy of the ZnO epilayer, suggesting that the EL emissions emerge from the ZnO epilayer. In addition, the current-voltage and light output-voltage characteristics of ZnO homojunction LEDs have also been studied. (c) 2006 American Institute of Physics.
Resumo:
Codoping of p-type GaN nanowires with Mg and oxygen was investigated using first-principles calculations. The Mg becomes a deep acceptor in GaN nanowires with high ionization energy due to the quantum confinement. The ionization energy of Mg doped GaN nanowires containing passivated Mg-O complex decreases with increasing the diameter, and reduces to 300 meV as the diameter of the GaN nanowire is larger than 2.01 nm, which indicates that Mg-O codoping is suitable for achieving p-type GaN nanowires with larger diameters. The codoping method to reduce the ionization energy can be effectively used in other semiconductor nanostructures. (C) 2010 American Institute of Physics.
Resumo:
To form low-resistance Ohmic contact to p-type GaN, InGaN/GaN multiple quantum well light emitting diode wafers are treated with boiled aqua regia prior to Ni/Au (5 nm/5 nm) film deposition. The surface morphology of wafers and the current-voltage characteristics of fabricated light emitting diode devices are investigated. It is shown that surface treatment with boiled aqua regia could effectively remove oxide from the surface of the p-GaN layer, and reveal defect-pits whose density is almost the same as the screw dislocation density estimated by x-ray rocking curve measurement. It suggests that the metal atoms of the Ni/Au transparent electrode of light emitting diode devices may diffuse into the p-GaN layer along threading dislocation lines and form additional leakage current channels. Therefore, the surface treatment time with boiled aqua regia should not be too long so as to avoid the increase of threading dislocation-induced leakage current and the degradation of electrical properties of light emitting diodes
Resumo:
Cupric iodide is a p-type semiconductor and has a large band gap. Doping of Mn, Co, and Ni are found to make gamma-CuI ferromagnetic ground state, while Cr-doped and Fe-doped CuI systems are stabilized in antiferromagnetic configurations. The origins of the magnetic ordering are demonstrated successfully by the phenomenological band coupling model based on d-d level repulsions between the dopant ions. Furthermore, using a molecular-orbital bonding model, the electronic structures of the doped CuI are well understood. According to Heisenberg model, high-T-C may be expected for CuI:Mn and CuI:Ni if there are no native defects or other impurities.
Resumo:
InGaN/GaN multi-quantum-well blue (461 +/- 4 nm) light emitting diodes with higher electroluminescence intensity are obtained by postgrowth thermal annealing at 720 C in O-2-ambient. Based on our first-principle total-energy calculations, we conclude that besides dissociating the Mg-H complex by forming H2O, annealing in O-2 has another positive effect on the activation of acceptor Mg in GaN. Mg can be further activated by the formation of an impurity band above the valence band maximum of host GaN from the passivated Mg-Ga-O-N complex. Our calculated ionization energy for acceptor Mg in the passivated system is about 30 meV shallower than that in pure GaN, in good agreement with previous experimental measurement. Our model can explain that the enhanced electroluminescence intensity of InGaN/GaN MQWs based on Mg-doped p-type GaN is due to a decrease in the ionization energy of Mg acceptor with the presence of oxygen. (C) 2008 American Institute of Physics.
Resumo:
Diluted magnetic nonpolar GaN:Mn films have been fabricated by implanting Mn ions into unintentionally doped nonpolar a-plane (1 1 (2) over bar 0) GaN films with a subsequent rapid thermal annealing (RTA) process. The structure, morphology and magnetic characteristics of the samples were investigated by means of high-resolution x-ray diffraction (XRD), atomic force microscopy (AFM) and a superconducting quantum interference device (SQUID), respectively. The XRD analysis shows that the RTA process can effectively recover the crystal deterioration caused by the implantation process and that there is no obvious change in the lattice parameter for the as-annealed sample. The SQUID result indicates that the as-annealed sample shows ferromagnetic properties and magnetic anisotropy at room temperature.
Resumo:
Phosphorous-doped and boron-doped amorphous Si thin films as well as amorphous SiO2/Si/SiO2 sandwiched structures were prepared in a plasma enhanced chemical vapor deposition system. Then, the p-i-n structures containing nano-crystalline Si/SiO2 sandwiched structures as the intrinsic layer were prepared in situ followed by thermal annealing. Electroluminescence spectra were measured at room temperature under forward bias, and it is found that the electroluminescence intensity is strongly influenced by the types of substrate. The turn-on voltages can be reduced to 3 V for samples prepared on heavily doped p-type Si (p(+)-Si) substrates and the corresponding electroluminescence intensity is more than two orders of magnitude stronger than that on lightly doped p-type Si (p-Si) and ITO glass substrates. The improvements of light emission can be ascribed to enhanced hole injection and the consequent recombination of electron-hole pairs in the luminescent nanocrystalline Si/SiO2 system. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Using the first-principles methods, we study the electronic structure, intrinsic and extrinsic defects doping in transparent conducting oxides CuGaO2. Intrinsic defects, acceptor-type and donor-type extrinsic defects in their relevant charge state are considered. The calculation result show that copper vacancy and oxygen interstitial are the relevant defects in CuGaO2. In addition, copper vacancy is the most efficient acceptor. Substituting Be for Ga is the prominent acceptor, and substituting Ca for Cu is the prominent donors in CuGaO2. Our calculation results are expected to be a guide for preparing n-type and p-type materials in CuGaO2.