69 resultados para oil field equipment
Resumo:
The biothermocatalytic transitional zone gas is a new type of natural gas genetic theory, and also an clean, effective and high quality energy with shallow burial depth, wide distribution and few investment. Meanwhile, this puts biothermocatalytic transitional zone gas in important position to the energy resource and it is a challenging front study project. This paper introduces the concept, the present situation of study and developmental trend about biothermocatalytic transitional zone gas in detail. Then by using heat simulating of source rocks and catalysis mechanism analysis in the laboratory and studying structural evolution, sedimentation, diagenesis and the conditions of accumulation formation and so on, this paper also discusses catalytic mechanism and evolutionary model of the biothermocatalytic transitional zone gas formation, and establishes the methods of appraisal parameter and resources prediction about the biothermocatalytic transitional zone gas. At last, it shows that geochemical characteristics and differentiated mark of the biothermocatalytic transitional zone gas, and perfect natural gas genetic theory, and points out the conditions of accumulation formation, distribution characteristics and potential distribution region on the biothermocatalytic transitional zone gas m China. The paper mainly focuses on the formation mechanism and the resources potential about the biothermocatalytic transitional zone gas. Based on filed work, it is attached importance to a combination of macroscopic and microcosmic analysis, and the firsthand data are obtained to build up framework and model of the study by applying geologic theory. Based on sedimentary structure, it is expounded that structural actions have an effect on filling space and developmental cource of sediments and evolution of source rocks. Carried out sedimentary environment, sequence stratigraphy, sedimentary system and diagenesis and so on, it is concluded that diagenesis influences developmental evolution of source rocks, and basic geologic conditions of the biothermocatalytic transitional zone gas. Applying experiment simulating and catalytic simulating as well as chemical analysis, catalytic mechanism of clay minerals is discussed. Combined diagenecic dynamics with isotope fractionation dynamics, it is established that basis and method of resource appraisal about the biothermocatalytic transitional zone gas. All these results effectively assess and predict oil&gas resources about the biothermocatalytic transitional zone gas-bearing typical basin in China. I read more than 170 volumes on the biothermocatalytic transitional zone gas and complete the dissertation' summary with some 2.4 ten thousand words, draw up study contents in some detail and set up feasible experimental method and technologic course. 160 pieces of samples are obtained in oilfield such as Liaohe, Shengli, Dagang and Subei and so on, some 86 natural gas samples and more than 30 crude oil samples. Core profiles about 12 wells were observed and some 300 geologic photos were taken. Six papers were published in the center academic journal at home and abroad. Collected samples were analysised more than 1000 times, at last I complete this dissertation with more than 8 ten thousand words, and with 40 figures and 4 plates. According to these studies, it is concluded the following results and understandings. 1. The study indicates structural evolution and action of sedimentary basin influence and control the formation and accumulation the biothermocatalytic transitional zone gas. Then, the structural action can not only control accommodation space of sediments and the origin, migration and accumulation of hydrocarbon matters, but also can supply the origin of energy for hygrocarbon matters foramtion. 2. Sedimentary environments of the biothermocatalytic transitional zone gas are lake, river and swamp delta- alluvial fan sedimentary systems, having a warm, hot and humid climate. Fluctuation of lake level is from low to high., frequency, and piling rate of sedimentary center is high, which reflect a stable depression and rapidly filling sedimentary course, then resulting in source rocks with organic matter. 3. The paper perfects the natural gas genetic theory which is compound and continuous. It expounds the biothermocatalytic transitional zone gas is a special gas formation stage in continuous evolutionary sequence of organic matter, whose exogenic force is temperture and catalysis of clay minerals, at the same time, having decarbxylation, deamination and so on. 4. The methodology is established which is a combination of SEM, TEM and Engery spectrum analysis to identify microstructure of crystal morphology about clay minerals. Using differential thermal-chromatographic analysis, it can understand that hydrocarbon formation potential of different typies kerogens and catalytic method of all kinds of mineral matrix, and improve the surface acidity technology of clay minerals measured by the pyridine analytic method. 5. The experiments confirm catalysis of clay minerals to organic matter hygrocarbon formation. At low temperature (<300 ℃), there is mainly catalysis of montmorillonite, which can improve 2-3 times about produced gas of organic matters and the pyrolyzed temperature decreased 50 ℃; while at the high temperature, there is mainly catalysis of illite which can improve more than 2 times about produced gas of organic matters. 6. It is established the function relationship between organic matter (reactant) concentration and temperature, pressure, time, water and so on, that is C=f (D, t). Using Rali isotope fractionation effect to get methane isotope fractionation formula. According to the relationship between isotope fractionation of diagenesis and depth, and combined with sedimentary rate of the region, it is estimated that relict gas of the biothermocatalytic transitional zone gas in the representative basin. 7. It is revealed that hydrocarbon formation mechanism of the biothermocatalytic transitional zone gas is mainly from montmorillonite to mixed minerals during diagenesis. In interlayer, a lot of Al~(3+) substitute for Si~(4+), resulting in a imbalance between surface charge and interlayer charge of clay minerals and the occurrence of the Lewis and Bronsted acid sites, which promote to form the carbon cation. The cation can form alkene or small carbon cation. 8. It is addressed the comprehensive identification mark of the biothermo - catalytic transitional zone gas. In the temproal-spatial' distribution, its source rocks is mainly Palaeogene, secondly Cretaceous and Jurassic of Mesozoic, Triassic, having mudy rocks and coal-rich, their organic carbon being 0.2% and 0.4% respectively. The vitrinite reflection factor in source rocks Ro is 0.3-0.65%, a few up to 0.2%. The burial depth is 1000-3000m, being characterized by emerge of itself, reservoir of itself, shallow burial depth. In the transitional zone, from shallow to deep, contents of montmorillonites are progressively reduced while contents of illites increasing. Under SEM, it is observed that montmorillonites change into illite.s, firstly being mixed illite/ montmorillonite with burr-like, then itlite with silk-like. Carbon isotope of methane in the biothermocatatytic transitional zone gas , namely δ~(13)C_1-45‰- -60 ‰. 9. From the evolutionary sequence of time, distribution of the biothermocatalytic transitional zone gas is mainly oil&gas bearing basin in the Mesozoic-Neozoic Era. From the distribution region, it is mainly eastern stuctural active region and three large depressions in Bohaiwang basin. But most of them are located in evolutionary stage of the transitional zone, having the better relationship between produced, reservoir and seal layers, which is favorable about forming the biothermocatalytic transitional zone gas reservoir, and finding large gas (oil) field.
Resumo:
The Dongying depression, located in the northern part of the jiyang Sag in the Buohaiwan Basin, comprises one of the major oil-producing bases of the Shengli oil-field. The prediction and exploration of subtle or litho1ogical oil traps in the oil-field has become the major confronted target. This is also one of the frontier study areas in the highly-explored oil-bearing basins in East China and abroad. Based on the integrated analysis of the geological, seismic and logging data and the theories of sequence stratigraphy, tectono-stratigraphy and petroleum system, the paper has attempted to document the characteristics of the sequence stratigraphic and structural frameworks of the low Tertiary, the syndepositional faults and their control on deposition, and then to investigate the forming conditions and distribution of the tithological oil traps in the depression. The study has set up a set of analysis methods, which can be used to effectively analysis the sequence stratigraphy of inland basins and predict the distribution of sandstone reservoirs in the basins. The major achievements of the study are as follows: 1. The low Tertiary can be divided into 4 second-order sequences and 13 third-order sequences, and the systems tracts in the third-order sequences have been also identified based on the examination and correction of well logging data and seismic profiles. At the same time, the parasequences and their stacking pattern in the deltaic systems of the third member of the Shahejie Formation have been recognized in the key study area. It has been documented that the genetic relation of different order sequences to tectonic, climatic and sediment supply changes. The study suggested that the formation of the second-order sequences was related to multiple rifting, while the activity of the syndepositional faults controlled the stacking pattern of parasequences of the axial deltaic system in the depression. 2. A number of depositional facies have been recognized in the low Tertiary on the basis of seismic facies and well logging analysis. They include alluvial fan, fan delta or braided delta, axial delta, lowstand fan, lacustrine and gravity flow deposits. The lacustrine lowstand fan deposits are firstly recognized in the depression, and their facies architecture and distribution have been investigated. The study has shown that the lowstand fan deposits are the important sandstone reservoirs as lithological oil traps in the depression. 3. The mapping of depositional systems within sequences has revealed the time and special distrbution of depositional systems developed in the basin. It is pointed out that major elastic systems comprise the northern marginal depositional systems consisting of alluvial fan, fan delta and offshore lowstand fan deposits, the southern gentle slope elastic deposits composed of shallow lacustrine, braided delta and lowstand fan deposits and the axial deltaic systems including those from eastern and western ends of the depression. 4. The genetic relationship between the syndepositional faults and the distribution of sandstones has been studied in the paper, upper on the analysis of structural framework and syndepositional fault systems in the depression. The concept of structural slope-break has been firstly introduced into the study and the role of syndepositional faults controlling the development of sequence architecture and distribution of sandstones along the hinged and faulted margins have been widely investigated. It is suggested that structural styles of the structural slope-break controlled the distribution of lowstand fan deposits and formed a favorable zone for the formation of lithological or structure-lithological oil traps in the basin. 5. The paper has made a deep investigation into the forming condition and processes of the lithological traps in the depression, based the analysis of composition of reservoir, seal and resource rocks. It is pointed out that there were two major oil pool-forming periods, namely the end of the Dongying and Guangtao periods, and the later one is the most important. 6. The study has finally predicted a number of favorable targets for exploration of lithologieal traps in the depression. Most of them have been drilled and made great succeed with new discovered thousands tons of raw oil reserves.
Resumo:
Oil and scientific groups have been focusing on the 3D wave equation prestack depth migration since it can solve the complex problems of the geologic structure accurately and maintain the wave information, which is propitious to lithology imaging. The symplectic method was brought up by Feng Kang firstly in 1984 and became the hotspot of numerical computation study. It will be widely applied in many scientific field of necessity because of its great virtue in scientific sense. This paper combines the Symplectic method and the 3-D wave equation prestack depth migration to bring up an effectual numerical computation method of wave field extrapolatation technique under the scientific background mentioned above. At the base of deep analysis of computation method and the performance of PC cluster, a seismic prestack depth migration flow considering the virtue of both seismic migration method and Pc cluster has formatted. The software, named 3D Wave Equation Prestack Depth Migration of Symplectic Method, which is based on the flow, has been enrolled in the National Bureau of Copyright (No. 0013767). Dagang and Daqing Oil Field have now put it into use in the field data processing. In this paper, the one way wave equation operator is decompounded into a phase shift operator and a time shift operator and the correct item with high rank Symplectic method when approaching E exponent. After reviewing eliminating alias frequency of operator, computing the maximum angle of migration and the imaging condition, we present the test result of impulse response of the Symplectic method. Taking the imaging results of the SEG/EAGE salt and overthrust models for example and seeing about the imaging ability with complex geologic structure of our software system, the paper has discussed the effect of the selection of imaging parameters and the effectuation on the migration result of the seismic wavelet and compared the 2-D and 3-D prestack depth migration result of the salt mode. We also present the test result of impulse response with the overthrust model. The imaging result of the two international models indicates that the Symplectic method of 3-D prestack depth migration accommodates great transversal velocity variation and complex geologic structure. The huge computing cost is the key obstruction that 3-D prestack depth migration wave equation cannot be adopted by oil industry. After deep analysis of prestack depth migration flow and the character of PC cluster ,the paper put forward :i)parallel algorithms in shot and frequency domain of the common shot gather 3-D wave equation prestack migration; ii)the optimized setting scheme of breakpoint in field data processing; iii)dynamic and static load balance among the nodes of the PC cluster in the 3-D prestack depth migration. It has been proven that computation periods of the 3-D prestack depth migration imaging are greatly shortened given that adopting the computing method mentioned in the paper. In addition,considering the 3-D wave equation prestack depth migration flow in complex medium and examples of the field data processing, the paper put the emphasis on: i)seismic data relative preprocessing, ii) 2.5D prestack depth migration velocity analysis, iii)3D prestack depth migration. The result of field data processing shows satisfied application ability of the flow put forward in the paper.
Resumo:
In order to developing reservoir of Upper of Ng at high-speed and high-efficient in Chengdao oilfield which is located in the bally shallow sea, the paper builds up a series of theory and means predicting and descripting reservoir in earlier period of oilfield development. There are some conclusions as follows. 1. It is the first time to form a series of technique of fine geological modeling of the channel-sandy reservoir by means of mainly seismic methods. These technique include the logging restriction seismic inversion, the whole three dimension seismic interpretation, seismic properties analysis and so on which are used to the 3-dimension distributing prediction of sandy body, structure and properties of the channel reservoir by a lot of the seismic information and a small quantity of the drilling and the logging information in the earlier stage of the oil-field development. It is the first time that these methods applied to production and the high-speed development of the shallow sea oilfield. The prediction sandy body was modified by the data of new drilling, the new reservoir prediction thinking of traced inversion is built. The applied effect of the technique was very well, according to approximately 200 wells belonging to 30 well groups in Chengdao oilfield, the drilling succeeded rate of the predicting sandy body reached 100%, the error total thickness only was 8%. 2. The author advanced the thinking and methods of the forecasting residual-oil prediction at the earlier stage of production. Based on well data and seismic data, correlation of sediment units was correlated by cycle-correlation and classification control methods, and the normalization and finely interpretation of the well logging and sedimentation micro-facies were acquired. On the region of poor well, using the logging restriction inversion technique and regarding finished drilling production well as the new restriction condition, the sand body distributing and its property were predicted again and derived 3-dimension pool geologic model including structure, reservoir, fluid, reservoir engineering parameter and producing dynamic etc. According to the reservoir geologic model, the reservoir engineering design was optimized, the tracking simulation of the reservoir numerical simulation was done by means of the dynamic data (pressure, yield and water content) of development well, the production rule and oil-water distributing rule was traced, the distributing of the remaining oil was predicted and controlled. The dynamic reservoir modeling method in metaphase of development was taken out. Based on the new drilling data, the static reservoir geologic model was momentarily modified, the research of the flow units was brought up including identifying flow units, evaluating flow units capability and establishing the fine flow units model; according to the dynamic data of production and well testing data, the dynamic tracing reservoir description was realized through the constant modification of the reservoir geologic model restricted these dynamic data by the theory of well testing and the reservoir numerical simulation. It was built the dynamic tracing reservoir model, which was used to track survey of the remaining oil on earlier period. The reservoir engineering tracking analysis technique on shallow sea oilfield was founded. After renewing the structure history since tertiary in Chengdao area by the balance section technique and estimating the activity character of the Chengbei fault by the sealing fault analysis technique, the meandering stream sediment pattern of the Upper of Ng was founded in which the meandering border was the uppermost reservoir unit. Based on the specialty of the lower rock component maturity and the structure maturity, the author founded 3 kinds of pore structure pattern in the Guanshang member of Chengdao oil-field in which the storing space mainly was primary (genetic) inter-granular pore, little was secondary solution pore and the inter-crystal pore tiny pore, and the type of throat mainly distributed as the slice shape and the contract neck shape. The positive rhythmic was briefly type included the simple positive rhythm, the complex positive rhythm and the compound rhythm. Interbed mainly is mudstone widely, the physical properties and the calcite interbed distribute localized. 5. The author synthetically analyzed the influence action of the micro-heterogeneity, the macro-heterogeneity and the structure heterogeneity to the oilfield water flood development. The efficiency of water flood is well in tiny structure of convex type or even type at top and bottom in which the water breakthrough of oil well is soon at the high part of structure when inject at the low part of structure, and the efficiency of water flood is poor in tiny structure of concave type at top and bottom. The remaining oil was controlled by sedimentary facies; the water flooding efficiency is well in the border or channel bar and is bad in the floodplain or the levee. The separation and inter layer have a little influence to the non-obvious positive rhythm reservoir, in which the remaining oil commonly locate within the 1-3 meter of the lower part of the separation and inter layer with lower water flooding efficiency.
Resumo:
Based on the study of sequence stratigraphy, modern sedimentary, basin analysis, and petroleum system in abrupt slop of depression, this paper builds sedimentary system and model, sandy bodies distribution, and pool-forming mechanism of subtle trap. There are some conclusions and views as follows. By a lot of well logging and seismic analysis, the author founded up the sequence stratigraphic of the abrupt slope, systematically illustrated the abrupt slope constructive framework, and pointed out that there was a special characteristics which was that south-north could be divided to several fault block and east-west could be carved up groove and the bridge in studying area. Based all these, the author divided the studying area to 3 fault block zone in which because of the groove became the basement rock channel down which ancient rivers breathed into the lake, the alluvial fan or fan delta were formed. In the paper, the author illustrated the depositional system and depositional model of abrupt slope zone, and distinguished 16 kinds of lithofacies and 3 kinds of depositional systems which were the alluvial fan and fan-delta system, lake system and the turbidite fan or turbidity current deposition. It is first time to expound completely the genetic pattern and distributing rule of the abrupt slope sandy-conglomeratic fan bodies. The abrupt slope sandy-conglomeratic fan bodies distribute around the heaves showing itself circularity shape. In studying area, the sandy-conglomeratic fan bodies mainly distribute up the southern slope of Binxian heave and Chenjiazhuang heave. There mainly are these sandy-conglomeratic fan body colony which distributes at a wide rage including the alluvial fan, sub-water fluvial and the turbidite fan or the other turbidity current deposition in the I fault block of the Wangzhuang area. In the II fault block there are fan-delta front and sub-water fluvial. And in the Binnan area, there mainly are those the alluvial fan (down the basement rock channel) and the sandy-conglomeratic fan body which formed as narrowband sub-water fluvial (the position of bridge of a nose) in the I fault block, the fan-delta front sandy-conglomeratic fan body in the H fault block and the fan-delta front and the turbidity current deposition sandy-conglomeratic fan body in the m fault block. Based on the reservoir outstanding characteristics of complex classic composition and the low texture maturity, the author comparted the reservoir micro-structure of the Sha-III and Sha-IV member to 4 types including the viscous crude cementation type, the pad cementation type, the calcite pore-funds type and the complex filling type, and hereby synthetically evaluated 4 types sandy- conglomeratic fan body reservoir. In the west-north abrupt slope zone of Dongying Depression, the crude oil source is belonging to the Sha-III and Sha-IV member, the deep oil of Lijin oilfield respectively come from the Sha-III and Sha-IV member, which belongs to the autogeny and original deposition type; and the more crude oil producing by Sha-IV member was migrated to the Wangzhuan area and Zhengjia area. The crude oil of Binnan oil-field and Shanjiasi oil-field belongs to mixed genetic. It is the first time to illustrate systematically the genetic of the viscous crude that largely being in the studying area, which are that the dissipation of the light component after pool-forming, the biological gradation action and the bath-oxidation action, these oil accumulation belonging to the secondary viscous crude accumulation. It is also the first time to compart the studying area to 5 pool-forming dynamical system that have the characteristic including the common pressure and abnormal pressure system, the self-fountain and other-fountain system and the closing and half-closing system etc. The 5 dynamical systems reciprocally interconnected via the disappearance or merger of the Ethology and the fluid pressure compartment zone, the fault and the unconformity surface, hereby formed duplicated pattern oil-gas collecting zone. Three oil-gas pool-forming pattern were founded, which included the self-fountain side-direction migrated collecting pattern, the self-fountain side-direction ladder-shape pool-forming pattern and the other-fountain pressure releasing zone migrated collecting pattern. A series of systemic sandy-conglomeratic fan bodies oil-gas predicting theory and method was founded, based on the groove-fan corresponding relation to confirm the favorable aim area, according as the characteristic of seismic-facies to identify qualitatively the sandy-conglomeratic fan bodies or its scale, used the temporal and frequency analysis technique to score the interior structure of the sandy- conglomeratic fan bodies, applied for coherent-data system analysis technology to describe the boundary of the sandy-conglomeratic fan bodies, and utilized the well logging restriction inversion technique to trace quantificational and forecast the sandy-conglomeratic fan bodies. Applied this technique, totally 15 beneficial sandy-conglomeratic fan bodies were predicted, in studying area the exploration was preferably guided, and the larger economic benefit and social benefit was acquired.
Resumo:
It is the key project of SINOPEC at ninth five years period with a lot of work and very difficult, which the main object are the study of pool-forming mechanism, distribution rule and pool-forming model of complex secondary pool at Dongying formation in high mature exploration area, and building theories and methods of research, description and prediction of secondary fault block pool. This paper apply comprehensively with various theories, method and techniques of geology, seismic, well log, reservoir engineering, meanwhile apply with computer means, then adopt combination of quality and quantitative to develop studies of pool-forming mechanism, model and pool prediction of fault block pool. On the based of stretch, strike-slip, reversal structure theories, integrated the geometry, kinematics, and dynamics of structure, it is show that the structure framework, the structure evolve, formation mechanism of central uplift belt of Dongying depression and control to formation and distribute of secondary complex fault block pool. The opening and sealing properties, sealing mechanism and sealing models of pool-controlling fault are shown by using quality, direction of normal stress, relations between interface and rock of two sides of fault and shale smear factor (SSF), as well as the juxtaposition of fault motion stage and hydrocarbon migration, etc. The sealing history of controlling fault, formation mechanism and distribute the regulation are established by combining together with bury history, structure evolve history, fault growth history stress field evolve history, which can be guide exploration and production oil field. It were bring up for the first time the dynamics mechanism of Dongying central uplift which were the result of compound tress field of stretch, strike-slip and reversal, companion with reversal drag structure, arcogenesis of paste and salt beds. The dual function of migration and sealing of fault were demonstrated in the research area. The ability of migration and sealing oil of pool-controlling fault is controlled by those factors of style of fault combination, activity regulation and intensity of fault at the period of oil migration. The four kinds of sealing model of pool-controlling fault were established in the research area, which the sealing mechanism of fault and distribution regulation of oil in time and space. The sealing ability of fault were controlled by quality, direction of normal stress, relations between interface and rock of two sides of fault and shale smear factor (SSF), as well as the juxtaposition of fault motion stage and hydrocarbon migration, etc. The fuzzy judge of fault sealing is the base of prediction of secondary pool. The pool-forming model of secondary was established in the research area, which the main factors are ability migration and sealing. The transform zone of fault, inner of arc fault and the compound area of multi fault are enrichment region of secondary pool of Dongying formation, which are confirm by exploration with economic performance and social performance.
Resumo:
Qianmiqiao buried hill, which is a high-yield burial hill pool, was discovered at Dagang oilfield in 1998. To employ the integrated geological and geophysical research at Qianmiqiao area, it is very valuable and meaningful for the petroleum exploration of Bohai Bay Basin and even the whole country. Based on the previous results, this paper is carried out from the research on Huanghua depression, following the law, i.e. the deep part constrains the shallow, the regional constrains the local, takes the geophysical research in Qianmiqiao oilfield, discusses the formation history of burial hills, burial history, thermal history, the generated and expelling history of hydrocarbon, and migration characteristics, probes into the formation of burial hill pool. This paper uses the gravity and magnetic methods which are based on potential field, with natural sources, configures the inner structure of the earth according to the difference in the density and magnetism of the rock. The geophysical characteristics of Dagang oil field is that it is an area with positive Buge gravity anomal. The upheaval of Moho boundary is in mirror symmetry with the depression of the basin's basement. The positive and negative anomaly distributein axis symmetry, and the orientation is NNE. The thickness of the crust gradually reduces from west to east, from land to sea. The depth gradient strip of Curie surface is similar to Moho boundary, whereas their local buried depth is different. Local fractures imply that the orientation of base rock fractures is NNE-NE, and the base rock is intersected by the fractures of the same/ later term, whose orientation is NW, so the base rock likes rhombic mosaic. The results of tomography show that there exists significant asymmetry in vertical and horizontal direction in the velocity configuration of Huanghua depression. From Dezhou to Tianjin, there exits high-speed block, which extends from south to north. The bottom of this high-speed block is in good agreement with the depth of Moho boundary. Hence we can conclude that the high-speed block is actually the crystal basement. According to seismic data, well data and outcrop data, Huanghua depression can be divided into four structure layers, i.e. Pi,2-T, Ji,2-K, E, N-Q. Qianmiqiao burial hills undergo many tectonic movement, where reverse faults in developed in inner burial hill from Indosinian stage to Yanshanian stage, the normal faults extended in Himalayan stage. Under the influence of tectonic movements, the burial hills show three layers, i.e. the reverse rushing faults in buried hills, paleo-residual hill, and extended horst block. The evolution of burial hills can be divided into four stages: steady raising period from Calenonian to early Hercynian, rushing brake drape period from Indosinian to middle Yanshanian, block tilting period in early Tertiary, and heating depression period from late Tertiary to Quaternary. The basin modeling softwares BasinMod 1-D and Basin 2-D, which are made by PRA corporation, are used in this paper, according to the requirement, corresponding geological model is designed. And we model the burial history, thermal history, hydrocarbon generation and hydrocarbon expelling history of Qianmiqiao area. The results show that present bury depth is the deepest in the geological history, the sedimentary rate of Tertiary is highest and its rising rate of temperature rate is higher. During sedimentary history, there is no large erosion, and in the Tertiary, the deeper sediment was deposited in large space, therefore it is in favor of the conservation and transformation of oil and gas. The thermal research shows that the heat primarily comes from basement of the basin, present geotherm is the highest temperature in the geological history. Major source rock is the strata of ES3, whose organic is abundant, good-typed, maturative and of high-expulsive efficiency. The organic evolution of source rock of O has come to the overmature stage, the evolving time is long and the source rock can be easily destroyed. Therefore it is more difficult for the O formation source rock to form the huge accumulation of oil and gas than Es3 formation. In the research of oil assembling, we first calculated the characteristics of the fluid pressure of single well, then analyzed the distribution of the surplus fluid pressure of each formation and profile, and probe the first hydrocarbon migration situation and the distribution of pressure system of buried hill pool. In every formation, the pressure system of each burial hill has its own characteristics, e.g. high pressure or low pressure. In the research of secondary migration, the fluid potential is calculated while the relative low potential area is figured out. In Qianmiqiao area, the west margin faults have the low potential, and hence is the favorable reconnoiter belt.
Resumo:
The foundation of reservoir model and residual oil prediction have been the core of reservoir detailed description for improved oil production and enhanced oil recovery. The traditional way of sandstone correlation based on the geometrical similarity of well-logs which emphasizes "based on the cycle and correlating from larger to smaller" has shown its theoretical limits when explaining the correlating and the scale, geometry, continuity, connectivity of sandstones and the law of the reservoir property. It has been an urgent and difficult subject to find new theory and methods to solve the reservoir correlation and property prediction. It's a new way to correlate strata and found framework of reservoir through the process-response analysis in the base-level cycles. And it is also possible to analyze the reservoir property in reservoir framework. Taking the reservoir of zonation 6-10 in S3~2 of Pucheng Oil Field in Henan Province as an example, we founded the detailed reservoir stratigraphic framework through base-level correlation. In the strata frame, sediment distribution and its development are discussed based on sediment volume partitioning and facies differentiation analysis. Reservoir heterogeneities and its relation to base-level are also discussed. The analysis of primary oil distribution shows the base-level controlled oil distribution in reservoir. In this paper, subjects as following are discussed in detail. Based on the analysis of sedimentary structure and sedimentary energy, the facies model was founded. Founding stratigraphy framework through base level analysis In the studying zone, one long term cycle, 6 middle term cycles and 27 short term cycles was identified and correlated. 3 Predicting the property of reservoir for improving oil development The base level controlled the property of sandbody. The short and very short term cycle controlled the pattern of heterogeneities in sandbody, and the middle and long term cycle controlled the area and inter-layer heterogeneities. On the lower location of the middle and long term base level, the sandbody is well developed, with a wide area and large thickness, while on the high location of base level, there is an opposite reservoir character. 4 The studying of reservoir development response and oil distribution making a solid base for development adjustment Primary oil distribution is controlled by base level location. It tells that the sandbody on the high base level location was poor developed for its difficulty to develop. While on the low location of the base level, the sandbody is well developed for its relative easy to develop and dominant role in the development, but high residual oil for its high original oil content.
Resumo:
Gas condensate reservoir research involves not only structure sediment reservoir liquid properties characterization but also the change of the temperature field, the change of the pressure field, the change of liquid phase and the reservoir sensitivity. To develop the gas condensate reservoir effectively .we must depict the static properties of the oil and gas system ,build exact and comprehensive parameter field, predict the rule of dynamic change and do the necessary reservoir characterization development plan dynamic prediction direct production. The MoBei Oil and Gas Field is the first gas condensate reservoirs which is found by the Xinjiang Oil Field Company in ZhunGaEr basin belly.it has deserved some knowledge after prospect evaluation, the MoBei Oil and Gas Field start development ,it is one of the important development blocks of Xinjiang Oil Field Company productivity constuction. During its development , it gradually appears some problems, such as complex oil and gas phase, great change of reservoir stretch .uncertain reservoir type and scale, controling its development strategy and plan difficultly. To deserve the high efficient development and long-term stable production of the gas condensate reservoir, it is necessary to characterize it systematically and form a suit of scientific development strategy. This thesis take the MoBei zone SanGongHe sand group reservoir as research object, applied advanced log techniques ,such as the nulear magnetism log ,MDT testing .etc. After comprehensive research of loging geology information, set up a suit of methods to identify oil gas water layer .these methods can identify the gas-oil level and the oil-water level. On the basis of reasonable development object system, according fine structure interpretation and structure modeling. build any oil water column height of the reservoir accurately. Through carefully analysis of the basic theory and method of reservoir seism prediction. optimize a reservoir inversion method .technique. software fitting the research region aiming strata, set up the GR field, porosity field, Rt field, impedence field .permeability field and initial oil saturation field, generating the base of quantity reservoir characterization. Discussing the characteristic of reservoir fluid and the movement and reallocating of muti-phase fluid in reservoir. And according the material of 100 soviet gas condensate reservoir ,build the recognition method and mode of gas condensate reservoir. Building the 3D geology model ,carry on the static and production evaluation, propose the development strategy and improve plan , provide the base of increasing reserves and advancing production and enriching the prospect development theory of the gas condensate reservoi
Resumo:
Aim at the variousness and complexity of the spatial distribution of Remaining Oil in the fluvial and delta facies reservoir in paper. For example, in the La-Sa-Xing oilfield of Daqing, based on the research of the control factor and formation mechanization of block, single layer, interlayer and micromechanism, synthesizing the theories and methods of geology, well logging, reservoir engineering, artificial intelligence, physical simulation test , and computer multidisciplinary; Fully utilizing the material of geology, well logging, core well, dynamic monitor of oil and water well, and experimental analysis, from macro to micro, from quality to quantity, from indoor to workplace, we predicted the potentiality and distribution according to the four levels of Block, single layer, interlayer and micromechanism, and comprehensively summarized the different distribution pattern of remaining oil in the fluvial and delta facies reservoir This paper puts forward an efficient method to predict the remaining recoverable reserves by using the water flooding characteristic curve differential method and neutral network; for the first time utilizes multilevel fuzzy comprehensive judgment method and expert neutral network technology to predict the remaining oil distribution in the single layer? comprehensively takes advantage of reservoir flowing unit, indoor physical simulation test, inspection well core analysis and well-logging watered-out layer interpretation to efficiently predict the distribution of remaining oil; makes use of core analysis of different periods and indoor water driving oil test to study the micro distribution of remaining oil and the parameters varying law of reservoir substance properties, rock properties, wetting properties. Based on above, the remaining oil distribution predicting software is developed, which contains four levels of block, single layer, interlayer and micromechanism. This achievement has been used inLa-Sa-Xing oil field of Daqing and good results have been received.
Resumo:
This paper is belonging to Chinese Petrochemical Corporation's science and technology project. Although it is difficult, it has important theoretical and practical value. The study was aimed to reveal inhomogeneity of two kinds of reservoirs of fan-shaped delta and braided river by using new theories, new methods and new technology about 3-D model building and reservoir knowledge repository throughout the world, and to build reservoir knowledge repository and 3-D geological model which would predict the type of sand body forming reason and distribution rule in order to improve exploration result in Qiuling oil fields. Multi-discipline theories such as petroleum structure geology, reservoir geology, petroleum geology, sequence geology, logging geology, geomathematics and so on are used as guide. The information of geology, seism, logging and production test is combined. Outcrop area and overlap area are combined. By making full use of computer, stable structure, reservoir geometric shape, spatial distribution and inhomogeneity of bed of interest are investigated, described and characterized. Petroleum pool 3-D static geological model of reservoir knowledge repository was built. Sand body distribution was predicted. It has guided oil development, lowed the investment and improved development benefits. Several results are achieved as follows: (1) Strata framework of Sanjianfang group in Qiuling oil field has been established. (2) Geometric shape, spatial distribution and evolve rule of two different forming reason's reservoir of fan-shaped delta and braided river of Sanjianfang group in Qiuling oil field are discussed. (3) The two kinds of reservoirs have lower pore and permeability and very strong inhomogeneity. (4) Reservoir knowledge repository of two different forming reasons has been built of Sanjianfang group, which includes 5 geological knowledge sublibrary. (5) 3-D geological model of two kinds of forming reason's reservoirs has been built. (6) That same sequence instruction a simulation and probability field were used to predict sand body of Sanjianfang group was put forward. Coincidence rate is high after production test. It shows this method has great popularity value. (7) A set of theories, methods and technologies of knowledge repository of two kinds of reservoir of braided river and fan-shaped delta and 3-D geological model building were finished. (8) A set of theories, methods and technologies of investigating, describing, characterizing and predicting two kinds of oil pool were developed. It gets noticeable economic benefit after exploration. Theory and method about extrusion basin are developed.
Resumo:
This study is aimed to reveal macroscopic and microscopic anisotropism by using new theories, new methods and new technology. In order to reveal the forming mechanism and distribution pattern of remaining oil, flow units 4-dimension model and realistic model was established according the data over 20 years development of the Pucheng Oil field. Based on theories of multi-discipline subject, methods and technologies, by using correspondent 4-D data body and computer, combining quantity and quality study, static and development data, macroscopic and microscopic data, the two different geneses' reservoir, eg., braided delta and lake delta, are studied. The two different geneses' reservoir flow units models were established. Main achievement of this thesis are summarized as following: The standard of parameter optimization, identification and appreciation of two different geneses' reservoir were established. Based on the standard, the reservoir were classed into four flow units class as G,E,F and P. The flow unit static models of two different geneses' reservoir were established, and the relation of geometric shape, space distribution and macroscopic remaining oil was revealed. the flow units microscopic model were established, which tells that the changes of all the microscopic factor in the development. (4) Accordig BP arithmetic method, an adapt arithmetic method were designed, and the reservoir flow units were simulated based on the new method. (5) Reservoir realistic model of flow unit were established. Based on the model the microscopic development is simulated, which reveals the oil and water seepage in the reservoir and the mechanism of the microscopic oil formation. (6) The spatial residual oil distribution patterns were summarized. The remaided oil is mainly in the places as not being affected by the injected water, high part of the structures and the place near the sealed faults. There are 3 kinds and 9 distribution modes of microscopic remaining oil. The forming mechanism and distribution rule were pointed out. The study has developed a set of theories, technology and methods for flow units study, including flow units description, characterization and prediction. The study is also an improvement of the development geology theory in continental fault depression lake basin.
Resumo:
Based on the study of the combined flooding test block of Guantao formation in Third faulted block of Yangsanmu oil field, this paper carries out the integration of reservoir precise characterization for very high water cut reservoir, establishes precise 3D geologic model for high water cut development period and states the changing law of the reservoir architecture dtiring development by combined flooding. Then, by subdivided the thick oil reservoir, the study of remaining oil saturation monitoring in fiber glass cased well and tracer monitoring is developed. According the study of multiple constrained combined flooding reservoir numerical simulation, remaining oil distribution are predicted, the methods architecture of predicting remaining oil distribution are established for fluvial facies reservoir at late development stage, develops plan is designed and adjustment associating technologies for enhancing oil recovery. On these base, related measures for tapping the potential are given, it is verified and optimized through the field former test and the good economic effect is achieved . The major achievements of this paper are as follows. The changing law of the reservoir architecture and it's property parameters is revealed, The result indicates that the temperature-pressure of the injecting material and the interaction effect of the injecting material and reservoir petrography are the main factors of the dynamic changes of the reservoir architecture. The quantitative reservoir geologic model, which is tallied with dynamic reservoir parameters of the study area, is established. Subdivided the thick oil reservoir is very important for the study of the remaining oil distribution within the thick oil reservoir. Subdivided the thick oil reservoir technology, which consists of six technologies as follow: micro-cyclic divided, flow unit method, architectural element method, high resolution log technology, high resolution-process technology for normal logging data and using the production data is presented. 3. It is established dynamic monitoring system of remaining oil saturation quantitative research which are inner and interlayer remaining oil saturation from time-lapse logging in fiber glass cased well, inter-well remaining oil saturation from the technology of isotopic tracer monitoring technology, and 4d remaining oil saturation distribution from combined flooding numerical modeling integrated by production datao The forming mechanism of remaining oil for polymer flooding and alkali/polymer combined flooding is clarified, and the plane and vertical distribution law of remaining oil after combined flooding is revealed. Predicting methods and technologies for the combined flooding reservoir of fluvial facies is developed. Combined flooding has been achieved good displacement result in the pilot of Third fault block in Yangsanmu oil field, and accumulated types of important parameters and optimum plans, this technology of combined flooding is expected to increase recovery ratio by 4.77%.
Resumo:
The Gangxi oil field has reached a stage of high water production. The reservoir parameters, such as reservoir physical characteristics, pore structure, fluid, have obviously changed. This thesis therefore carries out a study of these parameters that control reservoir characteristics, physical and chemical actions that have taken place within the reservoirs due to fluid injection, subsequent variations of reservoir macroscopic physical features, microscopic pore structures, seepages, and formation fluid properties. This study rebuilds a geologic model for this oil field, establishes a log-interpreting model, proposes a methodology for dealing with large pore channels and remnant oil distribution, and offers a basis for effective excavation of potential oil, recovery planning, and improvement of water-injection techniques. To resolve some concurrent key problems in the process of exploration of the Gangxi area, this thesis carries out a multidisciplinary research into reservoir geology, physical geography, reservoir engineering, and oil-water well testing. Taking sandstone and flow unit as objects, this study establishes a fine geologic model by a quantificational or semi-quantificational approach in order to understand the remnant oil distribution and the reservoir potential, and accordingly proposes a plan for further exploration. By rebuilding a geological model and applying reservoir-engineering methods, such as numerical simulation, this thesis studies the oil-water movement patterns and remnant-oil distribution, and further advances a deployment plan for the necessary adjustments and increase of recoverable reserves. Main achievements of this study are as follows: 1. The Minghazhen Formation in the Gangxi area is featured by medium-sinuosity river deposits, manifesting themselves as a transitional type between typical meandering and braided rivers. The main microfacies are products of main and branch channels, levee, inter-channel overflows and crevasse-splay floodplains. The Guantao Group is dominantly braided river deposit, and microfacies are mainly formed in channel bar, braided channel and overbank. Main lithofacies include conglomerate, sandstone, siltstone and shale, with sandstone facies being the principal type of the reservoir. 2. The reservoir flow unit of the Gangxi area can be divided into three types: Type I is a high-quality heterogeneous seepage unit, mainly distributed in main channel; Type II is a moderate-quality semi-heterogeneous seepage unit, mainly distributed in both main and branch channels, and partly seen within inter-channel overflow microfacies; Type III is a low-quality, relatively strong heterogeneous seepage unit, mainly distributed in inter-channel overflow microfacies and channel flanks. 3. Flow units and sedimentary microfacies have exerted relatively strong controls on the flowing of underground oil-water: (1) injection-production is often effective in the float units of Type I and II, whilst in the same group of injection-production wells, impellent velocity depends on flow unit types and injection-production spacing; (2) The injection-production of Type III flow unit between the injection-production wells of Type I and II flow units, however, are little effective; (3) there can form a seepage shield in composite channels between channels, leading to inefficient injection and production. 4. Mainly types of large-scale remnant-oil distribution are as follows: (1) remnant oil reservoir of Type III flow unit; (2) injection-production well group of remnant oil area of Type III flow unit; (3) remnant oil reservoirs that cannot be controlled by well network, including reservoir featured by injection without production, reservoir characterized by production without injection, and oil reservoir at which no well can arrive; (4) remnant oil area where injection-production system is not complete. 5. Utilizing different methods to deal with different sedimentary types, sub-dividing the columns of up to 900 wells into 76 chronostratigraphic units. Four transitional sandstone types are recognized, and contrast modes of different sandstone facies are summarized Analyzing in details the reservoirs of different quality by deciphering densely spaced well patterns, dividing microscopic facies and flow units, analyzing remnant oil distribution and its effect on injection-production pattern, and the heterogeneity. Theory foundation is therefore provided for further excavation of remnant oil. Re-evaluating well-log data. The understanding of water-flood layers and conductive formations in the Gangxi area have been considerably improved, and the original interpretations of 233 wells have changed by means of double checking. Variations of the reservoirs and the fluid and formation pressures after water injection are analyzed and summarized Studies are carried out of close elements of the reservoirs, fine reservoir types, oil-water distribution patterns, as well as factors controlling oil-gas enrichment. A static geological model and a prediction model of important tracts are established. Remaining recoverable reserves are calculated of all the oil wells and oil-sandstones. It is proposed that injection-production patterns of 348 oil-sandstones should be adjusted according to the analysis of adaptability of all kinds of sandstones in the injection-production wells.
Resumo:
By applying multi-discipline theory and methods comprehensively and with full use of computer, the paper deeps into studying changing rule and control factor of fluid field of ES2 Shengtuo oil field during waterflood development, physical and chemical function, and stress. Matrix field, network field, fluid field, stress field and physical chemistry field and fluid model for dynamic function were established. Macroscopic and microscopic genesis mechanics, distribution rule and control factor of remaining oil were revealed. Remaining oil and emulate model were established. Macroscopic and microscopic distribution rule of mover remaining oil were predicted, several results were achieved as following: The distribution of remaining oil was controlled by micro-structure. At the same development stage, remaining oil saturation of the wells located in higher position of micro-structure is higher than the average saturation in the same layer. The water content ratio has same law. It is the enrichment district that the high position of micro-structure controlled by seal faults. The remaining oil distribution was affected by sedimentary micro-facies, micro-structure, fault sealing, reservoir heterogeneity and affusion-oil extraction. On the plane, the zone owning higher saturation of remaining oil is the area that at the edge miacro-facies and sand-body distribution discontinuously; on the section, the content of waterflood of the upper or middle-upper oil layer of positive rhythm and positive comprehensive rhythm is lower, middle and weak waterflood is main, remaining oil is in enrichment relatively. The remaining oil is relative enrichment at the zones of well network of affusion and oil extraction not affected. 4D dynamic model of reservoir of Es2in Shengtuo oil field was established. Macroscopic and microscopic forming mechanics, distribution rule and control factor were revealed. The emulate model of dynamic function of Shengtuo oil field was established, the space distribution of remaining oil were predicted. Reservoir flow field, matrix field, network field, seep field, physical and chemical field, stress field and fluid field models were established. Reservoir flow field character and distribution were revealed. An improvement of the development geology theory in continental fault depression continental basin was brought on.