166 resultados para off-shell triangle diagram
Resumo:
We have investigated the evolution of exciton state filling in InAs/GaAs quantum dot (QD) structures as a function of the excitation power density by using rnicro-photoluminescence spectroscopy at different temperatures. In addition to the emission bands of exciton recombination corresponding to the atom-like S, P and D, etc. shells of QDs, it was observed that some extra states V between the S and P shells, and D' between the P and D shells appear in the spectra with increasing number of excitons occupying the QDs at a certain temperature. The emergence of these inter-shell excitonic levels is power density and temperature dependent, which is an experimental demonstration of strong exciton-exciton exchange interaction, state hybridization, and coupling of a multi-exciton system in QDs. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Mode characteristics of equilateral triangle resonators (ETRs) are analyzed based on the symmetry operation of the point group C-3v. The results show that doubly degenerate eigenstates can be reduced to the A(1) and A(2) representations of C-3v, if the longitudinal mode number is a multiple of 6; otherwise, they form the E irreducible representation Of C-3v. And the one-period length for the mode light ray is half of the perimeter of the ETR. Mode Q-factors are calculated by the finite-difference time-domain (FDTD) technique and compared with those calculated from far-field emission based on the analytical near-field pattern for TE and TM modes. The results show that the far-field emission based on the analytical field distribution can be used to estimate the mode Q-factor, especially for TM modes. FDTD numerical results also show that Q-factor of TE modes reaches maximum value as the longitudinal mode number is a multiple of 7. In addition, photoluminescence spectra and measured Q-factors are presented for fabricated ETR with side lengths of 20 and 30 mu m, and the mode wavelength intervals are compared with the analytical results.
Resumo:
The eigenmode characteristics for equilateral triangle resonator (ETR) semiconductor microlasers are analysed by the finite-difference time-domain technique and the Pade approximation. The random Gaussian correlation function and sinusoidal function are used to model the side roughness of the ETR. The numerical results show that the roughness can cause the split of the degenerative modes, but the confined modes can still have a high quality factor. For the ETR with a 3 mum side length and the sinusoidal fluctuation, we can have a quality factor of 800 for the fundamental mode in the wavelength of 1500 nm, as the amplitude of roughness is 75 mn.
Resumo:
The size of equilateral triangle resonator (ETR) needed for confining the fundamental mode is investigated by the total reflection condition of mode light rays and the FDTD numerical simulation. The confinement of the TM modes can be explained by the total reflection of mode light rays, and the confinement of the TE modes requires a larger ETR than the TM modes, which may be caused by excess scattering or radiation loss for the TE modes. With the multilayer staircase approximation, it is found that the spontaneous emission factor of the ETR lasers has the same form as that of strip waveguide lasers.
Resumo:
Semiconductor microlasers with an equilateral triangle resonator (ETR) are analyzed by rate equations with the mode lifetimes calculated by the finite-difference time-domain technique and the Pade approximation. A gain spectrum based on the relation of the gain spectrum and the spontaneous emission spectrum is proposed for considering the mode selection in a wide wavelength span. For an ETR microlaser with the side length of about 5 mum, we find that single fundamental mode operation at about 1.55 mum can be obtained as the side length increases from 4.75 to 5.05 mum. The corresponding wavelength tuning range is 93 nm, and the threshold current is about 0.1 to 0.4 mA.
Resumo:
The eigenmodes confined in the equilateral triangle resonator (ETR) are analyzed by deriving the eigenvalues and the mode field distributions and by the finite difference time domain (FDTD) technique. The analytical results show that the one-period-length for the mode light rays inside the ETR is the perimeter of the ETR, and the number of transverse modes is limited by the condition of total internal reflection. In addition, the sum of the longitudinal mode index and the transverse mode index should be an even number, which limits the number of confined modes again. Based on the FDTD technique and the Pade approximation, we calculate the mode resonant frequencies and the quality factors from the local maximum and the width of the spectral distribution of the intensity The numerical results of mode frequencies agree very well with the analytical results, and the quality factor of the fundamental mode is usually higher than that of the higher order transverse modes. The results show that the ETR is suitable to realize single-made operation as semiconductor microcavity lasers.
Resumo:
Semiconductor microlasers with an equilateral triangle resonator (ETR) and an output waveguide are proposed and analyzed by the finite-difference time-domain technique and the Pade approximation. The numerical results show that microlasers with an output waveguide still have a high-quality factor (Q factor) and are suitable to realize directional emission. For the ETR with a 0.46-mum-width opening in one of the vertices connected to the output waveguide, we have the Q factor of 1.5x10(3) and 2.5x10(2) for the TM fundamental mode at the wavelength of 1.55 mum, as the side length of the ETR is 5 and 3 mum. The simulated intensity distributions are presented for the fundamental mode in the ETR with a side length of 3 mum and an opening of 0.23 mum. (C) 2000 American Institute of Physics. [S0003-6951(00)01749-6].
Resumo:
CdSe nanoclusters overcoated with CdS shell were prepared with macapoacetic acid as stabilizer. The optical properties of CdSe nanoclusters and the influence of CdS shell on the electronic structures of CdSe cores were studied by optical absorption, photoluminescence (PL) and photoluminescence excitation (PLE) spectroscopies. Based on PL and PLE results and the theoretical calculation on fine structure of bandedge exciton, a model of formation of excimer within the small clusters was proposed to explain the large Stokes shift of luminescence from absorption edge observed in PL results. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The mode wavelength and quality factor (Q-factor) for resonant modes in optical equilateral triangle resonators (ETR's) are calculated by the finite-difference time-domain (FDTD) technique and the Pade approximation, For an ETR with the side length of 3 mu m and the refractive index of 3.2, we get the mode wavelength interval of about 70 nm and the Q-factor of the fundamental mode over 10(3), The results show that the ETR is suitable to realize single-mode operation, and that the radiation loss in the corner regions of ETR is rather low, In addition, the numerical results of the mode wavelength agree very well with our analytical formula.
Resumo:
CdS/ZnS core/shell nanocrystals were prepared from an aqueous/alcohol medium. A red shift of the absorption spectrum and an increase of the room temperature photoluminescence intensity accompanied shell growth.
Resumo:
We performed Raman scattering investigations on low-temperature-grown (LTG) films of GaAs that had been lifted off the GaAs substrate. The Raman measurements unambiguously show the effects of excess arsenic on phonon scattering from LTG films of GaAs. The larger downwards shift of the LO phonon frequency for unannealed free-standing films is explained by invoking the elimination of mismatch strain. The Raman signal due to precipitates of elemental arsenic in the annealed GaAs : As films is determined. It is confirmed that the arsenic clusters formed by rapid thermal annealing are mainly amorphous, giving rise a broad Raman peak in the range 180-260 cm(-1).
Resumo:
Directional emission triangle and square InGaAsP/InP lasers have been fabricated by standard photolithography, inductively coupled plasma etching technique combined with wet chemical etching process. In this article, the characteristics of the microcavity lasers are presented. For an equilateral triangle microcavity laser with the side length of 30 mu m, we got the laser spectra fitted very well with the mode wavelength formulate LIP to the 8(th) transverse mode at room temperature. But the laser spectra are usually more complex than the formulae for the lasers, especially for the lasers with a smaller side length. For a square microcavity laser with side length of 20 mu m, we observed the mode competition between the Fabry-Perot (FP) modes and Whispering-Gallery (WG) modes at 200K. The output spectra below the threshold have the mode interval of FP modes with a large mode interval, and the laser spectra agree very well with the WG modes, which have mode interval less than the FP modes. The output spectra are dominated by the FP modes below the threshold, because the FP modes have a higher output coupling efficiency than the WG modes.
Resumo:
Output coupling efficiencies are analyzed for triangular and square microlasers connected with an output waveguide by FDTD simulation. The results show that square resonator with an output waveguide connected to the midpoint of one side can have high output coupling efficiency and a good mode selection.
Resumo:
Equilateral-triangle-resonator (ETR) microlasers with an output waveguide connected to one of the vertices of the ETR are fabricated using standard photolithography and inductively-coupled-plasma etching techniques. Continuous-wave electrically injected 1550 nm ETR laser with side length ranged from 15 to 30 tm are realized at room temperature.
Resumo:
The morphological defects and uniformity of 4H-SiC epilayers grown by hot wall CVD at 1500 degrees C on off-oriented (0001) Si faces are characterized by atomic force microscope, Nomarski optical microscopy, and Micro-Raman spectroscopy. Typical morphological defects including triangular defects, wavy steps, round pits, and groove defects are observed in mirror-like SiC epilayers. The preparation of the substrate surface is necessary for the growth of high-quality 4H-SiC epitaxial layers with low-surface defect density under optimized growth conditions. (c) 2006 Elsevier Ltd. All rights reserved.