71 resultados para nondegenerate four-wave mixing (FWM)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stokes drift is the main source of vertical vorticity in the ocean mixed layer. In the ways of Coriolis - Stokes forcing and Langmuir circulations, Stokes drift can substantially affect the whole mixed layer. A modified Mellor-Yamada 2.5 level turbulence closure model is used to parameterize its effect on upper ocean mixing conventionally. Results show that comparing surface heating with wave breaking, Stokes drift plays the most important role in the entire ocean mixed layer, especially in the subsurface layer. As expected, Stokes drift elevates both the dissipation rate and the turbulence energy in the upper ocean mixing. Also, influence of the surface heating, wave breaking and wind speed on Stokes drift is investigated respectively. Research shows that it is significant and important to assessing the Stokes drift into ocean mixed layer studying. The laboratory observations are supporting numerical experiments quantitatively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

MASNUM wave-tide-circulation coupled numerical model (MASNUM coupled model, hereinafter) is developed based on the Princeton Ocean Model (POM). Both POM and MASNUM coupled model are applied in the numerical simulation of the upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer. The upwelling mechanisms are analyzed from the viewpoint of tide, and a new mechanism is proposed. The study suggests that the tidally inducing mechanism of the upwelling includes two dynamic aspects: the barotropic and the baroclinic process. On the one hand, the residual currents induced by barotropic tides converge near the seabed, and upwelling is generated to maintain mass conservation. The climbing of the residual currents along the sea bottom slope also contributes to the upwelling. On the other hand, tidal mixing plays a very important role in inducing the upwelling in the baroclinic sea circumstances. Strong tidal mixing leads to conspicuous front in the coastal waters. The considerable horizontal density gradient across the front elicits a secondary circulation clinging to the tidal front, and the upwelling branch appears near the frontal zone. Numerical experiments are designed to determine the importance of tide in inducing the upwelling. The results indicate that tide is a key and dominant inducement of the upwelling. Experiments also show that coupling calculation of the four main tidal constituents(M-2, S-2, K-1, and O-1), rather than dealing with the single M-2 constituent, improves the modeling precision of the barotropic tide-induced upwelling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamical behaviors and frequency characteristics of an active mode-locked laser with a quarter wave plate (QWP) are numerically studied by using a set pf vectorial laser equation. Like a polarization self-modulated laser, a frequency shift of half the cavity mode spacing exists between the eigen-modes in the two neutral axes of QWP. Within the active medium, the symmetric gain and cavity structure maintain the pulse's circular polarization with left-hand and right-hand in turn for each round trip. Once the left-hand or right-hand circularly polarized pulse passes through QWP, its polarization is linear and the polarized direction is in one of the directions of i45o with respect to the neutral axes of QWP. The output components in the directions of i45" from the mirror close to QWP are all linearly polarized with a period of twice the round-trip time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analytical and numerical studies of secondary electro-osmotic flow EOF and its mixing in microchannels with heterogeneous zeta potentials are carried out in the present work. The secondary EOFs are analyzed by solving the Stokes equation with heterogeneous slip velocity boundary conditions. The analytical results obtained are compared with the direct numerical simulation of the Navier-Stokes equations. The secondary EOFs could transport scalar in larger areas and increase the scalar gradients, which significantly improve the mixing rate of scalars. It is shown that the heterogeneous zeta potentials could generate complex flow patterns and be used to enhance scalar mixing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes a new method for measuring the temperature of the gas behind the reflected shock wave in shock tube, corresponding to the reservoir temperature of a shock tunnel, based on the chemical reaction of small amount of CF4 premixed in the test gas. The final product C2F4 is used as the temperature indicator, which is sampled and detected by a gas chromatography in the experiment. The detected concentration of C2F4 is correlated to the temperature of the reflected shock wave with the initial pressure P-1 and test time tau as parameters in the temperature range 3 300 K < T < 5 600 K, pressure range 5 kPa < P1 <12 kPa and tau similar or equal to 0.4 ms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressure wave refrigerators (PWR) refrigerate the gas through periodical expansion waves. Due to its simple structure and robustness, PWR may have many potential applications if the efficiency becomes competitive with existing alternative devices. In order to improve the efficiency, the characteristics of wave propagation in a PWR are studied by experiment, numerical simulation and theoretical analysis. Based on the experimental results and numerical simulation, a simplified model is suggested, which includes the assumptions of flux-equilibrium and conservation of the free energy. This allows the independent analysis of the operation parameters and design specifics. Furthermore, the optimum operation condition can be deduced. Some considerations to improve the PWR efficiency are also given.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a vertically oscillating circular cylindrical container, singular perturbation theory of two-time scale expansions was developed in inviscid fluids to investigate the motion of single free surface standing wave including the effect of surface tension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present density measurements from the application of interferometry and Fourier transform fringe analysis to the problem of nonstationary shock wave reflection over a semicircular cylinder and compare our experimental measurements to theoretical results from a CFD simulation of the same problem. The experimental results demonstrate our ability to resolve detailed structure in this complex shock wave reflection problem, allowing visualization of multiple shocks in the vicinity of the triple point, plus visualization of the shear layer and an associated vortical structure. Comparison between CFD and experiment show significant discrepancies with experiment producing a double Mach Reflection when CFD predicts a transitional Mach reflection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A theoretical expression for vertical profile-of horizontal velocity in terms of its depth-average is derived based on oscillatory boundary layer theory and estuarine flow characteristics. The derived theoretical profile is then incorporated into a vertical quasi-two-dimensional model, which is proved advantageous in more physical implications and less CPU time demand. To validate the proposed model, the calculated results are compared to the field data in the Yangtze River Estuary, exhibiting good agreement with observations. The proposed quasi-two-dimensional vertical model is used to study mixing process, especially dependence of salinity distribution and salt front strength on runoff and tides in estuaries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the cellular structure of a two-dimensional detonation wave in a low pressure H2/O2/Ar mixture calculated with a detailed chemical reaction model, high order scheme and high resolution grids is investigated. The regular cellular structure is produced about 1 ms after introducing perturbations in the reaction zone of a steady one-dimensional detonation wave. It is found from the present resolution study that the discrepancies concerning the structure type arising from the coarser grid employed can be resolved using a sufficiently fine grid size of 0.05 mm and below and shows a double-Mach-like strong-type configuration. During the structure evolution process, the structure configuration does not change much in the periods before and after the triple point collision. Through the triple point collision, three regular collision processes are observed and are followed by a quick change to the double-Mach-like configuration. The simulated structure tracks show that there are three different tracks associated with different triple points or the kink on the transverse wave. Comparisons with previous work and experiments indicate the presence of a strong structure for an ordinary detonation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modified resonance model of a weakly turbulent flame in a high-frequency acoustic wave is derived analytically. Under the mechanism of Darrieus-Landau instability, the amplitude of flame wrinkles, which is as functions of the expansion coefficient and the perturbation wave number, increases greatly independent of the 'stationary' turbulence. The high perturbation wave number makes the resonance easier to be triggered but weakened with respect to the extra acoustic wave. In a closed burning chamber with the acoustic wave induced by the flame itself, the high perturbation wave number is to restrain the resonance for a realistic flame.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three-dimensional compressible Navier-Stokes equations are approximated by a fifth order upwind compact and a sixth order symmetrical compact difference relations combined with three-stage Ronge-Kutta method. The computed results are presented for convective Mach number Mc = 0.8 and Re = 200 with initial data which have equal and opposite oblique waves. From the computed results we can see the variation of coherent structures with time integration and full process of instability, formation of Lambda-vortices, double horseshoe vortices and mushroom structures. The large structures break into small and smaller vortex structures. Finally, the movement of small structure becomes dominant, and flow field turns into turbulence. It is noted that production of small vortex structures is combined with turning of symmetrical structures to unsymmetrical ones. It is shown in the present computation that the flow field turns into turbulence directly from initial instability and there is not vortex pairing in process of transition. It means that for large convective Mach number the transition mechanism for compressible mixing layer differs from that in incompressible mixing layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mechanism of wave-seabed interaction has been extensively studied by coastal geotechnical engineers in recent years. Numerous poro-elastic models have been proposed to investigate the mechanism of wave propagation on a seabed in the past. The existing poro-elastic models include drained model, consolidation model, Coulomb-damping model, and full dynamic model. However, to date, the difference between the existing models is unclear. In this paper, the fully dynamic poro-elastic model for the wave-seabed interaction will be derived first. Then, the existing models will be reduced from the proposed fully dynamic model. Based on the numerical comparisons, the applicable range of each model is also clarified for the engineering practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

波浪作用下海床的稳定性分析是海洋工程地质评价的重要内容。海床的稳定性可通过计算分析其随时间变化的有效应力场来评估。建议了一个周期载荷作用下土体的本构模型,并用于计算波浪作用下海床的应力与变形。采用Biot固结理论和有限单元法,分析了海床的动态应力场与孔隙水压力场。波浪作用下两种渗透系数时有效应力的动态变化过程结果对比,反映了渗透消散作用对海床有效应力变化的影响。