126 resultados para neutron dosimetry
Resumo:
The newly developed multi-quasiparticle triaxial projected shell model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce- and Nd-isotopes. It is observed that gamma-bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K-states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei based on the ground-state to gamma-bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I = 10 aligning states in Ce-134 and both exhibiting a neutron character. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A systematic study of neutron-rich even-even Fe isotopes with a neutron number from 32 to 42 is carried out by using the projected shell model. Calculations are performed up to the spin I=20 state. Irregularities found in the yrast spectra and in B (E2) values are discussed in terms of neutron excitations to the high-j orbital g(9/2). Furthermore, the neutron two-quasiparticle structure of a low-K negative-parity band and the proton two-quasiparticle structure of a high-K positive-parity band are predicted to exist near the yrast region. Our study reveals a soft nature for the ground state of N approximate to 40 isotopes and emphasizes the important role of the neutron g(9/2) orbital in determining the structure properties for both low- and high-spin states in these nuclei.
Resumo:
The first spectroscopic study for the beta decay of N-21 is carried out based on beta-n, beta-gamma, and beta-n-gamma coincidence measurements. The neutron-rich N-21 nuclei are produced by the fragmentation of the E/A=68.8 MeV Mg-26 primary beam on a thick Be-9 target and are implanted into a thin plastic scintillator that also plays the role of beta detector. The time of flight of the emitted neutrons following the beta decay are measured by the surrounding neutron sphere and neutron wall arrays. In addition, four clover germanium detectors are used to detect the beta-delayed gamma rays. Thirteen new beta-delayed neutron groups are observed with a total branching ratio of 90.5 +/- 4.2%. The half-life for the beta decay of N-21 is determined to be 82.9 +/- 7.5 ms. The level scheme of O-21 is deduced up to about 9 MeV excitation energy. The experimental results for the beta decay of N-21 are compared to the shell-model calculations.
Resumo:
A systematic study of the pi(-)/pi(+) ratio in heavy-ion collisions with the same neutron/proton ratio but different masses can help single out effects of the nuclear mean field on pion production. Based on simulations using the IBUU04 transport model, it is found that the pi(-)/pi(+) ratio in head-on collisions of Ca-48 + Ca-48, Sn-124 + Sn-124, and Au-197 + Au-197 at beam energies from 0.25 to 0.6 GeV/nucleon increases with increasing the system size or decreasing the beam energies. A comprehensive analysis of the dynamical isospin fractionation and the pi(-)/pi(+) ratio as well as their time evolution and spatial distributions demonstrates clearly that the pi(-)/pi(+) ratio is an effective probe of the high-density behavior of the nuclear symmetry energy.
Resumo:
In this paper a two dimensional readout micromegas detector with a polyethylene foil as converter was simulated on GEANT4 toolkit and GARFIELD for fast neutron detection. A new track reconstruction method based on time coincidence technology was developed in the simulation to obtain the incident neutron position. The results showed that with this reconstruction method higher spatial resolution was achieved.