100 resultados para microporous aluminophosphate


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two porous zirconium methylphosphonates (designated as ZMPmi and ZMPme respectively) were synthesized by using dibutyl methylphosphonate (DBMP) as a template. Two efficient post-synthetic treatments were developed to remove the incorporated template without destroying the hybrid structures. The materials were characterized by SEM, EPMA, TG, DTA, FTIR, and NMR. Specific surface area and porosity were evaluated by BET, alpha(s)-plots and DFT methods based on N-2 adsorption-desorption isotherms. The specific surface areas of ZMPmi and ZMPme are determined to be 279 and 403 m(2) g(-1) and the maxima of pore size distributions are at 0.7 and 1.3 nm respectively. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high quality pure hydroxy-sodalite zeolite membrane was successfully synthesized on an alpha-Al2O3 support by a novel microwave-assisted hydrothermal synthesis (MARS) method. Influence of synthesis conditions, such as synthesis time, synthesis procedure, etc., on the formation of hydroxy-sodalite zeolite membrane by MAHS method was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and gas permeation measurements. The synthesis of hydroxy-sodalite zeolite membrane by MAHS method only needed 45 min and synthesis was more than 8 times faster than by the conventional hydrothermal synthesis (CHS) method. A pure hydroxy-sodalite zeolite membrane was easily synthesized by MAHS method, while a zeolite membrane, which consisted of NaX zeolite, NaA zeolite and hydroxy-sodalite zeolite, was usually synthesized by CHS method. The effect of preparation procedures had a dramatic impact on the formation of hydroxy-sodalite zeolite membrane and a single-stage synthesis procedure produced a pure hydroxy-sodalite zeolite membrane. The pure hydroxy-sodalite zeolite membrane synthesized by MARS method was found to be well inter-grown and the thickness of the membrane was 6-7 mum. Gas permeation results showed that the hydrogen/n-butane permselectivity of the hydroxy-sodalite zeolite membrane was larger than 1000. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New types of templates and novel interactive mechanisms between template and framework are very important for creating porous materials. In this work, by using neutral dibutyl methylphosphonate as a template, an inorganic-organic hybrid mesoporous material, aluminum methylphosphonate, was prepared. The as-synthesized material was studied by P-31 magnetic angle spinning nuclear magnetic resonance (MAS NMR), Al-27 MAS NMR, C-13 CP/MAS, FT-IR spectroscopy, thermogravimetry (TG), differential thermal analysis (DTA), and transmission electron microscopy. After thermal treatment at 673 K and 10 mmHg for 2 h, hybrid mesoporous foam was obtained. The transformation process was investigated by FT-IR. TG-DTA results indicate that the methyl group bonded to the framework keeps intact up to 792 K under air and 823 K under nitrogen. The characterization results from nitrogen gas adsorption-desorption measurements show that the BET surface area and the Barrett-Joyner-Halenda desorption cumulative pore volume of the foam are 90 m(2) g(-1) and 0.32 cm(3) g(-1) respectively. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using microporous zeolites as host, sub-nanometric ZnO clusters were prepared in the micropores of the host by the incipient wetness impregnation method. A small amount of sub-nanometric ZnO clusters were introduced into the channels of HZSM-5 zeolite, whereas a large quantity of sub-nanometric ZnO clusters can be accommodated in the supercages of HY zeolite and no macrocrystalline ZnO exists on the extra surface of the HY material. The vibrations of the zeolite framework and ZnO were characterized by UV Raman spectroscopy. The optical properties of these ZnO clusters were studied by UV-visible absorption spectroscopy and laser-induced luminescence spectroscopy. It is found that there are strong host-guest interactions between the framework oxygen atoms of zeolite and ZnO clusters influencing the motions of the framework oxygen atoms. The interaction may be the reason why ZnO clusters are stabilized in the pores of zeolites. Different from bulk ZnO materials, these sub-nanometric ZnO clusters exhibit their absorption onset below 265 nm and show a purple luminescence band (centered at 410-445 nm) that possesses high quantum efficiency and quantum size effect. This purple luminescence band most likely originates from the coordinatively unsaturated Zn sites in sub-nanometric ZnO clusters. On the other hand, the differences in the pore structure between HZSM-5 and HY zeolites cause the absorption edge and the purple luminescence band of ZnO clusters in ZnO/HZSM-5 show a red shift in comparison with those of ZnO clusters in ZnO/HY.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study of the synthesis of SAPO-34 molecular sieves, XRD, SEM, XRF, IR and NMR techniques were applied to monitor the crystalloid, structure and composition changes of the samples in the whole crystallization process in order to get evidence for the crystallization as well as Si incorporation mechanism of SATO-34. XRD results revealed that the crystallization contained two stages. In the first 2.5 h (the earlier stage), high up to similar to80% of relative crystallinity could be achieved and the crystal size of SAPO-34 was almost the same as that of any longer time, indicating a fast crystallization feature of the synthesis. In this stage, IR revealed that the formation of SAPO-34 framework structure was accompanied by the diminution of hydroxyls, suggesting that crystal nuclei of SAPO-34 may arise from the structure rearrangement of the initial gel and the condensation of the hydroxyls. NMR results reveal that the template and the ageing period are crucial for the later crystallization of SAPO-34. Preliminary structure units similar to the framework of SAPO-34 have already formed before the crystallization began (0 h and low temperature). Evidence from IR, NMR, and XRF shows that the formation of the SAPO-34 may be a type of gel conversion mechanism, the solution support and the appropriate solution circumstance are two important parameters of the crystallization of SAPO-34. Meanwhile, NMR measurements demonstrated that about 80% of total Si atoms directly take part in the formation of the crystal nuclei as well as in the growth of the crystal grains in the earlier stage (<2.5 h). Evidence tends to support that Si incorporation is by direct participation mechanism rather than by the Si substitution mechanism for P in this stage (<2.5 h). In the later stage (>2.5 h), the relative content of Si increased slightly with a little decrease of Al and P. The increase of Si(4Al) and the appearance of the Si(3Al), Si(2Al), Si(1Al) and Si(OAl) in this stage suggest that substitution of the Si atoms for the phosphorus and for the phosphorus and aluminum pair takes place in the crystallization. The relationship among structure, acidity and crystallization process is established, which suggests a possibility to improve the acidity and catalytic properties by choosing a optimum crystallization time, thus controlling the number and distribution of Si in the framework of SAPO-34. (C) 2002 Elsevier Science Inc. All rights reserved.