77 resultados para metamorphic
Resumo:
The zircons from gneisses in high and ultrahigh pressure (HP-UHP) metamorphic zones of the Dabie Mountains have been studied on three aspects in this paper, including (1) radiation damage of zircon using Laser Raman spectrum; (2) genesis determination of zircons based on geochemistry; (3) temperature estimate of the HP-UHP metamorphism using Ti-in-zircon thermometer. The zircons have the full widths at half-maximum less than 15 cm-1 at the 1008 cm-1 peak, suggesting that they are well crystallized to moderately damaged. The early inherited zircons from gneisses had undergone significant annealing and recrystallization during the HP-UHP metamorphic event. The α-doses that zircons suffered were accumulated from about 200Ma, indicating that HP-UHP metamorphic rocks have been exhumed to the surface of the earth at this time. The studies from the CL images, mineral inclusions, U-Pb ages and trace elements reveal that metamorphic zircons were formed as two kinds of mechanisms: metamorphic growth and recrystallization. The zircons of metamorphic growth and recrystallization zircons that were completely equilibrated during the HP-UHP metamorphic event have been chosen to carry out for temperature estimate using the Ti-in-zircon thermometer. The result shows that the HP-UHP terrain of the Dabie Mountains can be divided into five zones with temperature gaps, suggesting that the terrain consists of tectonic slices with different metamorphic history.
Resumo:
Ju Nan of Shandong province is located at southwest of Sulu UHP (ultrahigh-pressure) metamorphic terrane. It is composed of gneiss, paragneiss, eclogites, ultramafic rocks, marble and quartzite. A large ductile shear zone extends east-west has been found at the Zhubian, The south of Junan county. The Zhubian ductile shear zone is composed of high srain rock and mylonites. The mylonites fall into 3 types: Initial gneiss mylonite, mylonite and altramylonit.obvious lineation of penetration,foliation,S-Cfabrics,porphyroclasts,folds,irregularundulatory,extinction,subgrain boundary, dynamic recrystallization microstructure, core-mantle structure and are common in the ductile shear zone. Based on field work and microstructural analyse, a conclution is arrived: The ductile shear zone is an approximately SE trending faults. The Zhubian ductile shear zone formed at Ep ―Hb facies conditions which could be proved by deformaed and metamorphosed mineral aggregates, Deformation behavior, Ternary-feldspar geothermometry and so on. Zircon MC―ICP―MS U-Pb analysis is performed on the mylonite and have an average age ―835.9±13.9Ma, it’s the primary rocks formed age. The Zhubian ductile shear zone maybe formed at 224-242Ma.
Resumo:
Extensive high to ultrahigh pressure metamorphic rocks are outcropped in the the Dabie-Sulu UHP orogenic belt. Disputes still exist about for protolith nature of metamorphic rocks, petrogenesis, tectonic setting, and influence on upper mantle during the Triassic deep subduction. In this study, a combined study of petrology, geochemistry, isotope geochemistry and zircon chronology was accomplished for high-grade gneisses in the basement of the ultrahigh-pressure metamorphic Rongcheng terrane to reveal protolith nature and petrogenesis of the gneisses and to disucss the magmatic succession along the northern margin of the Yangtze block in Neoproterozoic. Gneisses in the Rongcheng terrane are characterized by negative Nb, Ta, P and Ti anomalies, relatively low Sr/Y ratios and relatively high Ba/La, Ba/Nb and Ba/Zr ratios, mostly displaying geochemical affinity to Phanerozoic volcanic arc. Neoproterozoic protolith ages (0.7 ~ 0.8 Ga) and Paleoproterozoic average crustal residence time (1.92 ~ 2.21 Ga) favour a Yangtze affinity. The gneisses mostly display characteristics of enrichment of LREE, flat heavy rare earth elements (REE) patterns, moderately fractionation between LREE and HREE and slight negative or positive Eu anomalies, probably reflecting that melting took place in the middle to low crust (26 ~ 33 km), where amphibole fractionated from the melts and/or inherited from source material as major mineral phases in the source area. Sr-Nd isotopic composition of the gneisses supports this conclusion. According to εNd(t) and εHf(t) values, the gneisses can be divided into three groups. Gneisses of group I have the highest εNd(t) and εHf(t) values, corresponding to the range of -6 ~ -3 and -2.9 ~ 13.4, respectively. This suggests obvious influx of depleted mantle or juvenile crust in the formation of protoliths. Gneisses of group II have medium εNd(t) (-9 ~ -7) and εHf(t) values (-15.8 ~ -1.4), corresponding to relatively high TDM2(Nd) (1.99 ~ 2.31 Ga) and TDM2(Hf) (1.76 ~ 2.67 Ga) , respectively. This suggests these gneisses were formed by partial melting of Paleoproterozoic crust. Gneisses of group III have the lowest εNd(t) (-15 ~ -10) and εHf(t) values (-15.8 ~ -1.4), corresponding to the largest TDM2(Nd) (1.99 ~ 2.31 Ga) and TDM2(Hf) ( 1.76 ~ 2.67 Ga), respectively. This indicates that gneisses of group III were formed by remelting of Archean crustal material and further demonstrates existence of an Archean basement probably of the Yangtze affinity beneath the Rongcheng terrane. Gneisses of three groups have also certain different geochemical characteristics. Contents of REEs and trace elements reduce gradually from group I to group III. Zirconium saturation temperatures also show similar tendency. Compared to gneisses of group II and group III, gneisses of group I display geochemical feature similar to extensional tectonic setting, having relatively little influence by the source area. Therefore, geochemical characteristics for gneisses of group I can indictate that the protoliths of the Rongcheng gneisses formed in an extensional rifting tectonic setting. This conclusion is supported by the results of eclogites and gabbros previously reported in the Dabie-Sulu orogenic belt. Statistical results of the protolith ages of the Rongcheng gneisses show two age peaks around ~728 Ma and ~783 Ma with an about 50 Ma gap. Extensive magatism in abou 750 Ma along the northern margin of the Yangtze block can hardly be observed in the Rongcheng terrane. This phenomenon likely suggests discontinuous Neoproterozoic magmatism along the northern margin of the Yangtze block.
Resumo:
The Beishan orogenic collage locates at the triple-joint among Xinjiang, Gansu, and Inner Mongolia Provinces, at which the Siberian, Tarim and North China plates join together. It also occupies the central segment of the southern Central Asian Orogenic Belt (CAOB). The main study area in the present suty focused on the southwest part of the Beishan Mountain, which can be subdivided into four units southernward, the Mazhongshan continental block, Huaniushan Arc, Liuyuan suture zone and Shibanshan-Daqishan Arc. 1. The Huaniushan Arc was formed by northernward dipping subduction from the Orcovician to Permian, in which volcanic rocks ranging from basic to acidic with island arc affinity were widely developed. The granitiod intrusions become smaller and younger southward, whichs indicates a southward rollback of slab. The granitiod intrusions are mainly composed of I type granites, and their geochemical compositions suggest that they have affinities of island arc settings. In the early Paleozoic(440Ma-390Ma). The Shibanshan-Daqishan Arc, however, were produced in the southernward dipping subduction system from Carboniferous to Permian. Volcanic rocks from basic to acidic rocks are typical calcic-alkaline rocks. The granitiod intrusions become smaller and younger northernward, indicating subdution with a northernward rollback. The granitiod intrusions mainly consist of I-type granites, of which geochemical data support they belong to island arc granite. 2. Two series of adakite intrusions and eruptive rocks have been discovered in the southern margin of the Huaniushan Island Arc. The older series formed during Silurian (441.7±2.5Ma) are gneiss granitoid. These adakite granites intruded the early Paleozoic Liuyuan accretionary complex, and have the same age as most of the granite intrusions in the Huanniushan Arc. Their geochemical compostions demonstrate that they were derived from partial melting of the subudcted oceanic slab. These characteristics indicate a young oceanic crust subduction in the early Paleozoic. The late stage adakites with compositons of dacites associate with Nb-enriched basalts, and island arc basalts and dacites. Their geochemistries demonstrate that the adakites are the products of subducted slab melts, whereas the Nb-enriched basalt is products of the mantle wedge which have metasomatized by adakite melts. Such a association indicates the existences of a young ocean slab subduction. 3. The Liuyuan suture zone is composed of late Paleozoic ophiolites and two series of accretionary complexes with age of early Paleozoic. The early Paleozoic accretionary complex extensively intruded by early Palozioc granites is composed of metamorphic clastics, marble, flysch, various metamorphic igneous rocks (ultramafic, mafic and dacite), and eclogite blocks, which are connected by faults. The original compositions of the rocks in this complex are highly varied, including MORB, E-MORB, arc rocks. Geochronological study indicates that they were formed during the Silurian (420.9±2.5Ma and 421.1±4.3Ma). Large-scale granitiods intruded in the accretionary complex suggest a fast growth effect at the south margin of the Huaniushan arc. During late Paleozoic, island arc were developed on this accretionary complex. The late Paleozoic ophiolite has an age of early Permian (285.7±2.2Ma), in which the rock assemblage includes ultra-mafic, gabbros, gabbros veins, massive basalts, pillow basalt, basaltic clastic breccias, and thin layer tuff, with chert on the top.These igneous rocks have both arc and MORB affinities, indicating their belonging to SSZ type ophiolite. Therefore, oceanic basins area were still existed in the Liuyuan area in the early Permian. 4. The mafic-ultramafic complexes are distributed along major faults, and composed of zoned cumulate rocks, in which peridotites are surrounded by pyroxenite, hornblendites, gabbros norite and diorite outward. They have island-arc affinities and are consistent with typical Alaska-type mafic-ultramafic complexes. The geochronological results indicate that they were formed in the early Permian. 5. The Liuyuan A-type granite were formed under post-collisional settings during the late Triassic (230.9±2.5Ma), indicating the persistence of orogenic process till the late Triassic in the study area. Geochronological results suggested that A-type granites become younger southward from the Wulungu A-type granite belt to Liuyuan A-type granite belt, which is in good agreement with the accretionary direction of the CAOB in this area, which indicate that the Liuyuan suture is the final sture of the Paleo-Asin Ocean. 6. Structural geological evidence demonstrate the W-E spreading of main tectonic terrenes. These terrenes had mainly underwent through S-N direction contraction and NE strike-faulting. The study area had experienced a S-N direction compression after the Permian, indicating a collisional event after the Permian. Based on the evidene from sedimentary geology, paleontology, and geomagnetism, our studies indicate that the orogenic process can be subdivided into five stages: (1) the pre-orogenic stage occurred before the Ordovicain; (2) the subduction orogenic stage occurred from the Orcovician to the Permian; (3) the collisional orogenic stage occurred from the late Permian to the late Triassic; (4) the post-collision stage occurred after the Triassic. The Liuyuan areas have a long and complex tectonic evolutional history, and the Liuyuan suture zone is one of the most important sutures. It is the finally suture zone of the paleo-Asian ocean in the Beishan area.
Resumo:
Abstract:Little fundamental work on petroleum exploration and production of Zuunbayan Subbasin, Mongolia has been done before because of the backward economy and petroleum industry techniques in this country, which also results in our little knowledge of reservoir characteristics of this area. This paper focused on the sedimentary system, sedimentary facies, reservoir characteristics and their genesis distribution of Zuunbayan subbasin with various drilling, well logging, seismic, coring and outcrop data, aiming at providing significant guidances for the petroleum exploration and production of Zuunbayan area. Therefore, several conclusions have been achieved as follows: ①In Zuunbayan Subbasin, there are two chief source areas with Tarkhyata and Totoshan Uplifts in the southeast and Saykhandulaan Uplift in the west, respectively, while two subsidiary ones in the northeast and southwest of this subbasin. The sedimentary system of alluvial fan-fan delta is formed in the southeast highland, meanwhile braided river-braided river delta develops in the western ramp region and fan delta in the southern palaeohigh. ②There are middle to high permeability reservoirs in the upper Zuunbayan Formation and the upper member of lower Zuunbayan Formation meanwhile low-porosity and permeability to ultra-low permeability ones in Tsagaan Tsav Formation and the middle and lower members of lower Zuunbayan Formation. Combing with sedimentary facies belt, oil sources conditions and tectonic settings, favorable reservoir belts have been proved to be existing in the fan delta front reservoirs of lower Zuunbayan – Tsagaan Tsav Formation in the central uplift faulted zone as well as the braided river front ones of lower Zuunbayan-Tsagaan Tsav Formation in Zuunbayan nose anticlinal structural belts. ③The reservoir lithologic composition is complex and also related to volcanic activities. Generally, the types of lithologic composition in Zuunbayan Subbasin are chiefly feldspathic litharenites with low compositional maturity and high-middle textural maturity. The rock constituents from upper Cretaceous to lower Zuunbayan Formation are mainly metamorphic rocks including cleaving stone, phyllite, quartzite and schist while volcanic tuffs and acidic extrusive rocks are the secondary; and in the Tsagaan Tsav Formation are mainly volcanic tuffs with subsidiary cleaving stone, phyllite, quartzite and schist. ④In this paper, high-quality reservoirs in the upper member of lower Zuunbayan Formation have been discovered in the drilled high production wells of favorable reservoir facies through sedimentary system and sedimentary facies research, which benefits the prospect and also will bring a new life for petroleum exploration and production of Zuunbayan Subbasin. Key words: sedimentary system, sedimentary facies, superior quality reservoir, Zuunbayan Subbasin, lower Zuunbayan Formation
Resumo:
Jiuquan basin, located in the middle of the Hexizoulang, is one of the major important Mesozoic、cenozoic oil-gas bearing basin in the west of China. Jiuquan basin is composed of Jiuxi depression、Huahai-jinta depression and Jiudong depression. Basement of Jiudong depression is Silurian shallow metamorphic rock. Ying-er sag , focus of this study, is the biggest sag in Jiudong depression and the targeting study object is cretacic strata. Structure evolution and geological background were carefully studied in this research. A series of methods were applied to this research: values of oxygen and carbon isotope and trace elements analysis were used to recover salinity of the palae-lake water of the sag. The evolution and distribution of sedimentary faces were carefully studied. Also, various analysis and tests were made to study the diagenesis of the reservoir sandstones、porosity evolution and porosity distribution. All the studies indicate that sedimentary faces are main macroscopic factor controlling the reservoir quality; Compaction is the main factor destroying reservoir property. Carbonate cements greatly preserved the porosity in eodiagenesis because it had prevented significant early mechanical compaction and its dissolution in the late diagenesis generated secondary pores. Carbonate cements in the late diagenesis occluded primary porosity and played a negative role in the porosity preservation. Source of the carbonate cements were also preliminarily discussed. Feldspar grains and lithic fragments were dissolved by acid fluid and formed a great amount of secondary pores and developed the reservoir quality. Also, sedimentary-diagenesis zones were identified. On basis of these studies, Reservoir forming factors were studied. Keywords: Jiudong depression, sedimentary faces,reservoirs diagenesis reservoir evaluation,secondary pores
Resumo:
The Eastern Himalayan Syntaxis (EHS) is one of the strongest deformation area along the Himalayan belt resulted from the collision between Indian plate and the Eurasian Plate since the 50~60Ma, and has sensitivity tracked and preserved the whole collisional processes. It should depend on the detail geological investigations to establish the deformational accommodate mode, and the uplift history, to elucidate the deep structure and the crust-mantle interaction of the Tibet Plateau of the EHS. The deep-seated (Main Mantle Thrusts) structures were exhumed in the EHS. The MMT juxtapose the Gangdese metamorphic basement and some relic of Gangdese mantle on the high Himalayan crystalline series. The Namjagbawa group which is 1200~1500Ma dated by U/Pb age of zircon and the Namla group which is 550Ma dated by U/Pb age of zircon is belong to High Himalayan crystalline series and Gangdese basement respectively. There is some ophiolitic relic along the MMT, such as metamorphic ocean mantle peridotite and metamorphic tholeiite of the upper part of ocean-crust. The metamorphic ocean mantle peridotites (spinel-orthopyroxene peridotite) show U type REE patterns. The ~(87)Sr/~(86)Sr ratios were, 0.709314~0.720788, and the ~(143)Nd/~(144)Nd ratios were 0.512073~0.512395, plotting in the forth quadrant on the ~(87)Sr/~(86)Sr-~(143)Nd/~(144)Nd isotope diagram. Some metamorphic basalt (garnet amphibolite) enclosures have been found in the HP garnet-kynite granulite. The garnet amphibolites can be divided two groups, the first group is deplete of LREE, and the second group is flat or rich LREE, and their ~(87)Sr/~(86)Sr, ~(143)Nd/~(144)Nd ratios were 0.70563~0.705381 and 0.512468~0.51263 respectively. Trace element and isotopic characteristics of the garnet amphibolites display that they formed in the E-MORB environment. Some phlogolite amphibole harzburgites, which exhibit extensive replacement by Phl, Amp, Tc and Dol etc, were exhumed along the MMT. The Phl-Amp harzburgites are rich in LREE and LILE, such as Rb, K etc, and depletes Eu (Eu~* = 0.36 ~ 0.68) and HFSE, such as Nb, Ta, Zr, Hf, P, Ti etc. The trace element indicate that the Phl-Amp harzburgites have island arc signature. Their ~(87)Sr/~(86)Sr are varied from 0.708912 to 0.879839, ~(143)Nd/~(144)Nd from 0.511993 to 0.512164, ε Nd from- 9.2 to - 12.6. Rb/Sr isochrone age of the phlogolite amphibole harzburgite shows the metasomatism took place at 41Ma, and the Amp ~(40)Ar/~(39)Ar cooling age indcate the Phl-Amp harzburgite raising at 16Ma. There is an intense crust shortening resulted from the thrust faults and folds in the Cayu block which is shortened more 120km than that of the Lasha block in 35~90Ma. With the NE corner of the India plate squash into the Gangdese arc, the sinistral Pai shear fault and the dextral Aniqiao shear fault on the both sides of the Great bent of Yalun Zangbu river come into active in 21~26Ma. On the other hand, the right-lateral Gongrigabu strike-slip faults come into activity at the same period, a lower age bound for the Gongrigabu strike-slip fault is estimated to be 23~24Ma from zircon of ion-probe U/Pb thermochronology. The Gongrigabu strike-slip faults connect with the Lhari strike-slip fault in the northwestern direction and with the Saganing strike-slip at the southeastern direction. Another important structure in the EHS is the Gangdese detachment fault system (GDS) which occurs between the sedimental cover and the metamorphic basement. The lower age of the GDS is to be 16Ma from the preliminary 40Ar/39Ar thermochronology of white mica. The GDS is thought to be related to the reverse of the subducted Indian crust and the fast uplift of the EHS. Structural and thermochronology investigation of the EHS suggest that the eastern Tibet and the western Yunnan rotated clockwise around the EHS in the period of 35~60Ma. Later, the large-scale strike-slip faults (RRD, Gaoligong and Saganing fault) prolongate into the EHS, and connect with the Guyu fault and Gongrigabu fault, which suggest that the Indianchia block escape along these faults. Two kind of magmatic rocks in the EHS have been investigated, one is the mantle-derived amphibole gabbro, dioposide diorite and amphibole diorite, another is crust origin biotit-garnet adamellite, biotit-garnet granodiorite and garnet-amphibole-biotite granite. The amphibole gabbro dioposite diorite and amphibole diorite are rich in LREE, and LILE, such as Ba, Rb, Th, K, Sr etc, depleted in HFSE, such as Nb, Ta, Zr, Hf, Ti etc. The ratio of ~(87)Sr/~(86)Sr are from 0.7044 to 0.7048, ~(143)Nd/~(144)Nd are from 0.5126 to 0.5127. The age of the mantle origin magamatic rocks, which result from the partial melt of the raising and decompression anthenosphere, is 8Ma by ~(40)Ar/~(39)Ar dating of amphibole from the diorite. The later crust origin biotite-garnet adamellite, biotite-garnet granodiorite and garnet-amphibole-biotite granite are characterized by aboudance in LREE, and strong depletion of Eu. The ratios of ~(87)Sr-~(86)Sr are from 0.795035 to 0.812028, ~(143)Nd/~(144)Nd from 0.51187 to 0.511901. The ~(40)Ar/~(39)Ar plateau age of the amphibole from the garnet-amphibole-biotite granite is 17.5±0.3Ma, and the isochrone age is 16.8±0.6Ma. Their geochemical characteristics show that the crust-derived magmatic rocks formed from partial melting of the lower curst in the post-collisional environment. A group of high-pressure kaynite-garnet granulites and enclave of high-pressure garnet-clinopyroxene grnulites and calc-silicate grnulites are outcroped along the MMT. The peak metamorphic condition of the high-pressure granulites yields T=800~960 ℃, P=1.4~1.8Gpa, corresponding the condition of 60km depth. The retrograde assemblages of the high-pressure grnulites occur at the condition of T=772.3~803.3 ℃, P=0.63~0.64Gpa. The age of the peak metamorphic assemblages are 45 ~ 69Ma indicated by the zircon U/Pb ion-plobe thermochronology, and the retrograde assemblage ages are 13~26Ma by U/Pb, ~(40)Ar/~(39)Ar thermochronology. The ITD paths of the high-pressure granulites show that they were generated during the tectonic thickening and more rapid tectonic exhumation caused by the subducting of the Indian plate and subsequent break-off of the subducted slab. A great deal of apatite, zircon and sphene fission-track ages, isotopic thermochronology of the rocks in the EHS show that its rapid raising processes of the EHS can be divided into three main periods. There are 35~60Ma, 13~25Ma, 0~3Ma. 3Ma is a turn in the course of raising in the EHS which is characterized by abruptly acceleration of uplifting. The uplift ratios are lower than 1mm .a~(-1) before 3Ma, and higher than 1mm .a~(-1) with a maximum ratio of 30mm .a~(-1) since 3Ma. The bottom (knick point) of the partial anneal belt is 3.8km above sea level in the EHS, and correspond to age of 3Ma determined by fission-track age of apatite. The average uplift ratio is about 1.4 mm .a~(-1) below the knick point. The EHS has raised 4.3km from the surface of 2.36km above sea level since 3Ma estimated by the fossil partial anneal belt of the EHS. We propose a two-stage subduction model (B+A model) basing on Structural, thermochronological, magmatical, metamorphic and geophysical investigations of the EHS. The first stage is the subduction of the Indian continental margin following after the subduction of the Tethys Ocean crust and subsequent collision with the Gangdese arc, and the second stage is the Indian crust injecting into the lower crust and upper mantle of the Tibet plateau. Slab break-off seems to be occurred between these two stages.
Resumo:
There are many Archean TTG grey suites in the Wutaishan area, northern Shanxi Province, China. In the past one hundred years, many geologists have done excellent research work in the Wutaishan and its adjacent regions. However, the TTG suites were almost neglected. Located in the northern slope of Mt. Hengshan-namely the Archean Hengshan Island Arc, intruded the Zhujiafang supercrustal rocks at almost 2.5Ga, the Yixingzhai TTG Suite is originated from partial melting of the ancient lower crust upper mantle by REE and trace elements, and the emplacement occurred in an Archean island arc. The rocks are mainly of tonalitic, I type, and calc-alkaline trends are found in the magmatic evolution. At almost 1.8 Ga, the suite was transformed to be dome-like schists in an arc-arc collision event, and the rocks were metamorphosed to an extent of amphibolitic to granulitic facies. The peak metamorphic condition is of 710-760 ℃/0.68-0.72GPa, and the subsequent cooling history is recorded as 560-620 ℃/0.46-0.60GPa. In the center of the Mt. Wutaishan-known as the Archean Wutaishan Island Arc, intruded the Archean Chechang-Beitai TTG Suite, which is of 2.5Ga old and of trondhjemitic and tonalitic, with coexisting I- and S-types and a trondhjemitic magmatic evolution trend. Through REE and trace elements, the suite is believed to be from the partial melting of the ancient lower crust or upper mantle. The 1.8 Ga collision event also made the suite gneissic and the it was metamorphosed to be amphibolitic facies, whose peak condition is approximately of 680 (±50) ℃/0.7Gpa, and the subsequent cooling process is recorded as 680 (±50) ℃、550(±50) ℃、420(±10) ℃. Crustal growth is fulfilled through magmatic intrusion as well as eruption at about 2.5Ga, arc-arc collision at about 1.8 Ga in the Wutaishan area and its environs. Additionally, the biotite-muscovite and muscovite-plagioclase geothermometers are refined, and the biotite-hornblende geothermometer is developed in this dissertation.
Resumo:
Jiaodong Peninsula is the largest repository of gold in China. Varieties of studies have been involved in the mechanism of metallogenesis. This thesis is a part of the project "Study of basic geology related to the prespecting of the supra-large deposits" which supported by National Climbing Program of China to Prof. Zhou. One of the key scientific problems is to study the age and metallogenic dynamics of ore deposit and to understand how interaction between mantle and crust constrains on metallogenesis and lithogenesis. As Jiaodong Peninsula to be study area, the Rb-Sr, Sm-Nd and Pb isotopic systematics of pyrite and altered rocks are measured to define the age and origin of gold. The elemental and Sr-Nd-Pb isotopic compositions of dikes and granites was studied to implicate the source and lithogenesis of the dike and granite and removal of lithosphere and the interaction between mantle and crust in the Jiaodong Peninsula. Considering the tectonic of Jiaodong Peninsula, basic on the time and space, this thesis gives a metallogenic dynamics of gold mineralization and discusses the constraints of the interaction between mantle and crust on the metallogenesis and lithogenesis. This thesis reports the first direct Rb-Sr dating of pyrites and ores using sub-sampling from lode gold deposit in Linglong, Jiaodong Peninsula and the results demonstrate this as a useful geochronological technique for gold mineralization with poor age constraint. The Rb-Sr data of pyrites yields an isochron age of (121.6-122.7) Ma, whereas, those of ore and ore-pyrite spread in two ranges from 120.0 to 121.8 Ma and 110.0-111.7 Ma. Studies of characteristic of gold deposit, microscopy of pyrite and quartz indicate that the apparent ages of ore and ore-pyrite are not isochron ages, it was only mixed by two end members, i.e., the primitive hydrothermal fluids and wall rocks. However, the isochron age of pyrite samples constrains the age of gold mineralization, i.e., early Cretaceous, which is in good consistence with the published U-Pb ages of zircon by using the SHRIMP technique. The whole rock Rb-Sr isochron age of altered rocks indicates that the age of gold mineralizing in the Xincheng gold deposit is 116.6 ± 5.3 Ma. The Sr, Nd and Pb isotopic compositions of pyrite and altered rocks indicate that the gold and relevant elements were derived from multi-sources, i.e. dikes derived from enriched lithospheric mantle and granites, granodiorites and metamorphic rocks outcropped on the crust. It also shows that the hydrothermal fluids derived from mantle magma degassing had play an important role in the gold mineralizing. The major and trace elements, Sr-Nd-Pb isotopic data of granites and granodiorites suggest that the Linglong Granite and Kunyushan Granite were derived from partial melting of basement rocks in the Jiaodong Peninsula at post-collision of North China Craton with South China Craton. Guojialing Granodiorite was considered to be derived from a mixture source, that is, mixed by magmas derived from an enriched lithospheric mantle and crust during the delamination of lithosphere induced by the subduction of Izanagi Plate and the movement of Tancheng-Lujiang Fault. There are kinds of dikes occurred in the Jiaodong Peninsula, which are accompanying with gold mineralization in time and space. The dikes include gabrro, diabase, pyroxene diorite, gabrrophyre, granite-porphyry, and aplite. The whole rock K-Ar ages give two age intervals: 120-124 Ma for the dikes that erupted at the gold mineralizing stage, and <120 Ma of the dikes that intruded after gold mineralizing. According to the age and the relationship between the dikes and gold mineralizing, the dikes could be divided into two groups: Group I (t = 120-124 Ma) and Group II (t < 120Ma). Group I dikes show the high Mg and K, low Ti contents, negative Nb anomalies and positive Eu anomalies, high ~(87)Sr/~(86)Sr and negative εNd(t) values and an enrichment in light rare earth elements, large ion lithosphile elements and a depletion in high field strength elements. Thus the elemental and isotopic characteristics of the Group I dikes indicate that they were derived from an enriched lithospheric mantle perhaps formed by metasomatism of the melt derived from the recycled crustal materials during the deep subduction of continent. In contrast, the Group II dikes have high Ti, Mg and K contents, no negative Nb anomalies, high ~(87)Sr/~(86)Sr and positive or little negative εNd(t) values, which indicate the derivation from a source like OIB-source. The geochemical features also give the tectonic constraints of dikes, which show that Group I dikes were formed at continental arc setting, whereas Group II dikes were formed within plate background. Considering the tectonic setting of Jiaodong Peninsula during the period of gold mineralizing, the metallogenic dynamics was related to the subduction of Izanagi Plate, movement of Tancheng-Lujiang Fault and removal of lithopheric mantle during Late Mesozoic Era.
Resumo:
The dynamic environments of mineralization in Mesozoic Jiaodong gold mine concentrated area can be devided into two types, compressive environment which related to intracontinental collision and extensional environment which related to intracontinental volcanic rift. The altered rock type (Jiaojia type) and quartz vein type (Linglong type) which related to the former one, were discovered for several years, and became the main types of gold deposits in recent years. A new type gold deposit, syn-detachment altered tectonic breccia type gold deposit, such as Pengjiakuang gold deposit and Songjiagou gold deposit has been discovered on the northeastern margin of Jiaolai Basin. In this paper, the new type of gold deposit has been studied in detail. The study area is located at the northeastern boundaries of Jiaolai Basin, and between the Taocun-Jimo Fault and Wji-Haiyang Fault, in the eastern part of the Jiaodong Block. Pengjiakuang gold deposit and Songjiagou gold deposit occur in a arc-shape detachment fault zone between conglomerate of Lower Cretaceous Laiyang Formation and metamorphic complex of Lower Proterozoic Jingshan Group. Regional geological studies show that Kunyuanshan and Queshan granite intrusions and Qingshanian volcanism were formed in different period of lithospheric thinning of East China in Mesozoic. Granite intrusions were formed in compressive environment, while Qingshanian volcanism were formed in extensional environment. They are all related to the detachment of Sulu Orogenic Belt and the sinistral motion of Tanlu Fault. The Pengjiakuang detachment systems which were formed in the the sinistral motion of Tanlu Fault are the important ore-controlling and ore-containing structure. The Pengjiakuang type gold deposit, controlled by detachment structure, was formed before Yanshanian volcanic period concerning with mixture of meteoric water and magmatic water found in fluid inclusions of gold ores. The minerogenetic epoch has been proposed in 90~120Ma. the host rocks have been extensively subjected to pyritization, silicification, sericitization and carbonatization. Individual ore-body has maximum length of 800m, oblique extension of 500~700m and gold grade of 1~43 * 10~(-6). Native gold is disseminated in silicified, phyllic or carbonatized tectonic breccia. Sulfur, carbon and lead isotope studies on gold ores and wall rocks show that the sulfur come from the metamorphic complex of Lower Proterozoic Jingshan Group, carbon comes from the marble in Jingshan Group, while a part of lead comes from the mantle. The mineralizing fluid is rich in Na~+ and Cl~-, but relatively impoverished in K~+ and F~-. According to the date from hydrogen and oxygen isotopic compositions (δ~(18)OH_2O = 0.59%~4.03%, δDH_2O = -89.5%~97.9%), the conclusion can be reached that the mineralizing fluid of Pengjiakuang gold deposit was a kind of mixed hydrothermal solution which was mainly composed of meteoric water and magmatic water. A genetical model has been formulated. Some apparent anomaly features which show low in the central part and high in the both sides corresponding to the gold-bearing structure, were sum up after analying a vast amount of date by prospecting the orebodies using gamma-ray spectrometer, electrogeochemical parameter technique, controlled source audio magnetic telluric (CSAMT) and shallow surface thermometry in Pengjiakuang gold deposit. The location forecasting problem of buried orebodies has been solved according to these features, and the successful rate is very high in well-drilling. The structural geological-geophysical-geochemical prospecting model has been formulated on the base of the study of geological, geophysical and geochemical characteristics of Pengjiakuang type gold deposit, and the optimum combinational process of geophysical and geochemical prospecting techniques has been summed up. A comparative study shows that the Pengjiakuang type gold deposit, the syn-detachment altered tectonic breccia type gold deposit, is different from Jiaojia type gold deposits and Linglong type gold deposits, in Jiaodong Block. In general, if formed under an extensional tectonic condition and located at detachment fault zone along the margin of Mesozoic Jiaolai basin, and the gold mineralization has also close genetic relationship with alkaline magamtism. Being a new type of gold deposit in Jiaodong gold mine concentrated area, it could be potential to explore in the same regions which processed the same ore-forming geological conditions and mineralization informations.
Resumo:
Honghuagou gold field, Inner Mongolia, is selected as the study area for the dissertation. The geological background for gold mineralization, geology of gold deposits, ore-controlling factors, physical and chemical conditions, material sources, genesis and ore-forming epoch for gold mineralization are studied in the dissertation. Especially, the Early Mesozoic tectonic and magmatic activities and their relationship with gold mineralization are studied with special efforts. Based on the study, the criteria for ore-prospecting are systemically summarized, target areas for ore-prospecting are circled and their gold reserves is estimated. Based on the first discovery of Early Mesozoic ductile zone which show the detachment features and the study on the emplacement of Early Mesozoic maficintermediate dyke swarms, the author present that the studied area was mainly in extensional uplift state during Early Mesozoic. The tectonic evolution can be divided into two stages. The extension was dominated by ductile metamorphose at early stage, whose geodynamics was related with the post orogenic extension after the collision between the Northern China Plate with Siberia Plate. The extension at late stage was featured by the intrusion of diorite and the emplacement of dyke swarms, whose geodynamics was related with mantle uplift. The gold deposits in the area are just the products of the tectonic and magmatic activities resulted from Early Mesozoic extension. The plagio-amphibolite from Archean metamorphic rocks is partially melted under the influence of underplating caused by mantle uplift, result in the formation of diorite magma. The gold in metamorphic rocks will also be melted into magma pond, and ascend into the upper parts of crust along with the intrusion of magma. The gold-bearing hydrothermal fluids is formed during magma differentiation, and caused the precipitation and concentration of gold in favorable geological conditions, result in the formation of gold deposits. The fracture caused by the emplacement of dyke swarms break a path for the ascending and movement of hydrothermal fluids, some of them become parts of ore-controlling and host structure. The gold is thought to be formed in Early Mesozoic, not in Yanshanian epoch.
Resumo:
The Derni large Cu-Co-Zn sulfide deposit is occurred in the Derni melange belt, which is located in the eastern section of the A'nyemaqen ophiolite melange belt. The Derni deposit is hosted in the mantle peridotites and is very special in the world. Because the studying area is of very bad natural environment and very low geological research, the geotectonic setting and genesis of the deposit have long been debated. This paper studied these two questions and answered them. The research is of great significance to reveal impotant information of deep geology, crust-mantle interaction and geotectonic evolution, to enrich theories in the study of mineral deposit and provide scientific basic data for exploration and exploit of this kind of deposit. Based on the series of new achievements and new cognitions, to start with the geologic setting of the Derni deposit, through detailed field, tectonics, petrology, geochemistry, isotopic geochronology, microfossil, and study of mineral deposit, belongs to a melange belt, including mantle peridotites slice with ore, Late Precambrian sandstone and slate slice, metamorphic rock slice. 2. Petrological and geochemical characteristics indicate that the Derni mantle peridotite is not ophiolite mantle peridotite, but is occurred under the continental crust. 3. The U-Pb isotopic age of single-grain zircon form the accumulative rock suggests that the Derni mantle peridotite were formed in 747±10Ma, and underwent a great period of metamorphic process in 441.5±2.5Ma. 4. Microfossil assemblage from the carbonaceous slate belongs to Late Precambrian. Through petrography and petrochemistry, sandstone and slate were formed in the continental margin. 5. Sideronitic texture, which is first discovered in this study, reveals the characteristics of magmatic liquation. 6. Fluid inclusion explosion temperature of pyrite is in the range of -6.15~+6.64‰, and Pb isotope is consistent with mantle peridotite, which suggest ore-forming materials are from the mantle. To sum up, the upper mantle was melting partially, when it was metasomated by the mantle fluids with abundant Cu, Co, Zn, S, Au and LREE etc. The pockets of magma became enlarged by mantle tenacity shearing, and the pockets of magma occurred magmatic differentiation in the stable field, then the magma and ore pulp together with mantle refractory remnant dirpired and crystallized in the shallow part of the crust.
Resumo:
The Study on rheology of the lithosphere and the environments of the seismogenic layer is currently the basic project of the international earthquake research. Yunnan is the ideal place for studying this project. Through the multi-disciplinary comprehensive study of petrology, geophysics, seismo-geology, rock mechanics, etc., the depth-strength profiles of the lithosphere have been firstly constructed, and the seismogenic layer and its geophysical and tectonic environments in Yunnan have been systematically expounded in this paper. The related results achieved are of the important significances for further understanding the mechanism of strong earthquake generation, dividing the potential foci and exposing recent geodynamical processes in Yunnan. Through the comprehensive contrast of the metamorphic rocks in early and middle Proterozoic outcropping on the surface, DSS data and experimental data of rock seismic velocity under high temperature and high pressure, the petrological structure of the crust and upper mantle has been studied on Yunnan: the upper, middle and lower crust is composed of the metamorphic rocks of greenschist, amphibolite and granulite facies, respectively or granitoids, diorites and gabbros, respectively, and the upper mantle composed of the peridotites. Through the contrast studies of the heat flow and epicenters of the strong earthquakes, the distribution of the geotemperature and the data of focal depth, the relationship of between seismicity and geothermal structure of the lithosphere in Yunnan has been studied: the strong earthquakes with magnitude M ≥ 6.0 mainly take place at the geothermal gradient zone, and the seismic foci densely distribute between 200~500 ℃ isogeotherms. On the basis of studies of the rock properties and constituents of the crust and upper mantle and geothermal structure of the lithosphere, the structure of the rheological stratification of the lithosphere has been studied, and the corresponding depth-strength profiles have been constructed in Yunnan. The lithosphere in majority region of Yunnan has the structure of the rheological stratification, i.e. the brittle regime in the upper crust or upper part of the upper crust, ductile regime in the middle crust or lower part of the upper crust to middle crust, ductile regime in the lower crust and ductile regime in the subcrustal lithosphere. The rheological stratification has the quite marked lateral variations in the various tectonic units. The distributions of the seismogenic layer have been determined by using the high accurate data of focal depth. Through the contrast of the petrological structure, the structure of seismic velocity, electric structure, geotemperature structure, and rheological structure and the study of the focal mechanism in the seismogenic layer, the geophysical environments of the seismogenic layer in Yunnan have been studied. The seismogenic layer in Yunnan is located at the depths of 3 ~ 20 km; the rocks in the seismogenic layer are composed of the metamorphic rocks of greenschist to amphibolite facies (or granites to diorites); the seismogenic layer and its internal focal regions of strong earthquakes have the structure of medium properties with the relatively high seismic velocity, high density and high resistivity; there exists the intracrustal low seismic velocity and high conductivity layer bellow the seismogenic layer, the geotemperature is generally 100~500 ℃ in the depth range in which the seismogenic layer is located. The horizontal stress field predominates in the seismogenic layer, the seismogenic layer corresponds to the brittle regime of the upper crust or brittle regime of the upper crust to semibrittle regime of the middle crust. The formation of the seismogenic layer, preparedness and occurrence of the strong earthquakes is the result of the comprehensive actions of the source fault, rock constituent, structure of the medium properties, distribution of the geotemperature, rheological structure of the seismogenic layer and its external environments. Through the study of the structure, active nature, slip rate, segmentation of the active faults, and seismogenic faults, the tectonic environments of the seismogenic layer in Yunnan have been studied. The source faults of the seismogenic layer in Yunnan are mainly A-type ones and embody mainly the strike slip faults with high dip angle. the source faults are the right-lateral strike slip ones with NW-NNW trend and left-lateral strike slip ones with NE-NEE trend in Southwestern Yunnan, the right-lateral strike slip ones with NNW trend and left-lateral strike slip ones with NNE trend (partially normal ones) in Northwestern Yunnan, the right-lateral strike slip ones with NWW trend in Central Yunnan and left-lateral strike slip ones with NW-NNW trend in Eastern Yunnan. Taking Lijiang earthquake with Ms = 7.0 for example. The generating environments of the strong earthquake and seismogenic mechanical mechanism have been studied: the source region of the strong earthquake has the media structure with the relatively high seismic velocity and high resistivity, there exists the intracrustal low velocity and high conductivity layer bellow it and the strong earthquakes occur near the transitional zone of the crustal brittle to ductile deformation. These characteristics are the generality of the generating environments of strong earthquakes. However, the specific seismogenic tectonic environments and action of the stress field of the seismic source in the various regions, correspondingly constrains the dislocation and rupture mechanical mechanism of source fault of strong earthquake.
Resumo:
Since the discovery of coesite-bearing eclogites in Dabie and Sulu region over ten years ago, the Dabie collisional orogen has been the "hot-spot" across the world. While many great progresses have been made for the last decade in the researches on the Dabie and Sulu UHP metamorphic rocks in the following fields, such as, petrology, mineralogy, isotope chronology, and geochemistry, the study of the structural geology on the Dabie orogen is still in great need. Thrust and nappe tectonics commonly developed in any collisional orogenic belt during the syncollisional process of the orogen. It is the same as the Dabic collisional orogen is concerned. The paper put much stress on the thrust and nappe tectonics in the Dabic orogenic belt, which have been seldom systematically studied before. The geometric features including the division and the spatial distribution of various thrust and nappe tectonics in the Dabie orogen have been first studied, which is followed by the detailed studies on their kinematic characteristics in different scales varying from regional tectonics to microtectonics. In the thesis, new deformation ages have been obtained by the isotopic methods of ~(40)Ar-~(39)Ar, Sm-Nd and Rb-Sr minerals-whole rock isochrons on the mylonites formed in three ductile shear zones which bounded three different major nappes in the Dabie collisional orogenic belt. And the petrological, geochemical characteristics of some metamorphic rocks as well as the geotectonics of their protoliths, which have also deformed in the ductile shear zone, are analyzed and discussed. In the paper, twelve nappes in the Dabie orogen are first divided, which are bounded by various important NWW or NW-strike faults and three NNE-strike faults. They are Shangcheng Nappe, Huoshan Nappe, Yuexi Nappe, Yingshanjian-Hengzhong Nappe, Huangzhen Nappe, Xishui-Huangmei Nappe, Zhoudang Nappe, Suhe-Huwan Nappe, Xinxian Nappe, Hong'an Nappe, Mulan Nappe and Hhuangpi-Susong Nappe. In the Dabie orogen, three types of thrust and nappe tectonics belonging to two stages have been confirmed. They are: (1) early stage ductile thrust -nappe tectonics which movement direction was top-to-the-south; (2) late stage brittle to ductile-brittle thrust-nappe tectonics which are characterized by double-vergence movement, including top-to-the-north and top-to-the-south; (3) the third type also belongs to the late stage which also characterized by double-vergence movement, including top-to-the-east and top-to-the-west, and related to the strike-slip movement. The deformation ages of both Wuhe-Shuihou ductile shear zone and Taihu-Mamiao ductile shear zone have been dated by ~(40)Ar-~(39)Ar method. ~(40)Ar/~(39)Ar plateau ages of biotite and mica from the mylonites in these two shear zones are 219.57Ma and 229.12Ma. The plateau ages record the time of ductile deformation of the ductile shear zones, which made the concerned minerals of the mylonites exhume from amphibolite facies to the middle-upper crustal conditions by the early stage ductile thrust-nappe tectonics. The mineral isochons of Sm-Nd and Rb-Sr dating on the same mylonite sample of the metamafic rocks are 156.5Ma and 124.56Ma respectively. The two isochron ages suggest that the mylonitic rock strongly deformed in the amphilbolite facies at 156Ma and then exhumed to the upper crustal green schist condition at 124Ma with the activities of the Quiliping-Changlinggang ductile shear zone which bounded to the southen edge of Xinxian Nappe. Studies of the petrological and geochemical characteristics of some meta-mafic rocks and discussion on the geotectonics of their protoliths indicate that their protoliths were developped in an island arc or back-arc basin or active continental margin in which calc-alkline basalts formed. This means that arc-accretion orogeny had evolved in the margins of North china plate and/or Yangtze plate before these two plates directly collided with each other during the evolution process of Dabie orogen. Three-stage evolution of the thrust-nappe tectonics in Dabie collisional orogen has been induced based on the above-mentioned studies and previous work of others. And a possible 3-stage exhumation model (Thrust-Positive Flower Structure Model) has also been proposed.
Resumo:
Mafic granulite xenoliths have been extensively concerned over the recent years because they are critical not only to studies of composition and evolution of the deep parts of continental crust but to understanding of the crust-mantle interaction. Detailed petrology, geochemistry and isotope geochronology of the Early Mesozoic mafic-ultramafic cumulate xenoliths and mafic granulite xenoliths and their host diorites from Harqin area, eastern Inner-Mongolia have been studied here. Systematic Rb-Sr isochron, ~(40)Ar-~(39)Ar and K-Ar datings for mafic-ultramafic cumulate xenoliths give ages ranging from 237Ma to 221Ma. Geochemical research and forming temperature and pressure estimates suggest that cumulates are products of the Early Mesozoic mantle-derived magmatic underplating and they formed in the magmatic ponds at the lowermost of the continental crust and are later enclaved by the dioritic magma. Detailed study on the first-discovered mafic granulite xenoliths reveals that their modal composition, mineral chemistry and metamorphic P-T conditions are all different from those of the Precambrian granulite exposed on the earth surface of the North China craton. High-resolution zircon U-Pb dating suggests that the granulite facies metamorphism may take place in 253 ~ 236Ma. Hypersthene single mineral K-Ar dating gives an age of 229Ma, which is believed to represent a cooling age of the granulite. As the host rock of the cumulate and granulite xenoliths, diorites intruded into Archean metamorphic rocks and Permian granite. They are mainly composed of grandodiorite, tonalite and monzogranite and show metaluminous and calc-alkaline features. Whole rock and single mineral K-Ar dating yields age of 221 ~ 223Ma, suggesting a rapid uplift in the forming process of the diorites. Detailed field investigation and geochemical characteristics indicate that these diorites with different rock types are comagmatic rocks, and they have no genetic correlation with cumulate and granulite xenoliths. Geochemical model simulating demonstrates that these diorites in different lithologies are products of highly partial melting of Archean amphibolite. It is considered that the Early Mesozoic underplating induced the intrusion of diorites, and it reflects an extensional geotectonic setting. Compression wave velocity V_P have been measured on 10 representative rock samples from the Early Mesozoic granulite and mafic-ultramafic cumulate xenoliths population as an aid to interpret in-situ seismic velocity data and investigating velocity variation with depth in a mafic lower crust. The experiments have been carried out at constant confining pressures up to 1000MPa and temperatures ranging from 20 ℃ to around 1300 ℃, using the ultrasonic transmission technique. After corrections for estimated in situ crustal pressures and temperatures, elastic wave velocities range from 6.5 ~ 7.4 km s~(-1). On the basis of these experimental data, the Early-Mesozoic continental compression velocity profile has also been reestablished and compared with those of the present and of the different tectonic environments in the world. The result shows that it is similar to the velocity structure of the extensional tectonic area, providing new constraints on the Early Mesozoic continental structure and tectonic evolution of the North-China craton. Combining with some newly advancements about the regional geology, the thesis further proposes some constraints on the Mesozoic geotectonic evolution history, especially the features of deep geology of the North China craton.