60 resultados para liquid structure
Resumo:
A new ferric molybdenum phosphate containing a tunnel structure and crystallographically different clusters has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. A probe reaction of the oxidation of acetaldehyde with H2O2 using the tide compound as catalyst was carried out in a liquid-solid system, showing that the title compound had high catalytic activity in the reaction. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Catalysts consisting of heteropoly acids (HPAs) supported on different silica and mesoporous molecular sieves have been prepared by impregnation and the sol-gel method, respectively, and their catalytic behavior in fixed-bed alkylation of isobutane with butene has been investigated. The activity, selectivity and stability of the supported-HPA catalysts could be correlated with the surface acidity of the catalysts, the structure of supports as well as the time on stream (TOS). In the fixed-bed reactor, the acidity of the heteropoly acid is favorable to the formation of dimerization products (C-8(=)); especially, the pore size of supports was seen to have an important effect on activity and product distribution of the catalysts. Contrary to the traditional solid-acid catalysts, the supported-HPA catalysts own an excellent stability for alkylation, which makes it possible for these supported catalysts to replace the liquid-acid catalysts used in industry.
Resumo:
A liquid crystalline carbosilane dendrimer with Sc* phase has been synthesized in successive steps, resulting in the formation of defined, unimolecular compound. Twelve biphenyl mesogenic units were attached on its periphery and it has a three dimentional, treelike starburst structure. Its phase behavior was K95S(c)*103Ch118I. Compared.with its biphenyl mesogenic unit , 4-(2'-methylbutyl)-4'-(omega-hydroxyhexyl) azobenzene , which was melted at 128 degrees C and is not a liquid crystal, it is a good liquid crystal material with Sc* phase.
Resumo:
The poly(monoester (6-[4-(p-nitrophenyl) azo]phenoxy-1-hexyloxy) of maleic anhydride) shows a smectic phase with a focal conic fan texture. With the decrease of the monoestering degree the phase transition temperature decreases and the mesomorphic temperature range becomes narrow. The hydrogen bonding between two carboxylic acid groups was found to play a very important role in forming the smectic phase structure. The smectic bilayer structure has been built through self-assembly via. intermolecular hydrogen bonding.
Resumo:
The aggregate structure of the discotic compound 2,3,6,7,10,11-hexakispentyloxytriphenylene (HPT) was studied both for the crystalline state and the liquid crystalline state by using electron crystallography and a molecular simulation approach. In the crystalline state, HPT was found to adopt an orthorhombic P-2212 space group with cell parameters a = 36.73 Angstrom, b = 27.99 Angstrom and c = 4.91 Angstrom. Molecular packing calculations were conducted to elucidate the molecular conformation and mutual orientational characteristics in the different states. Phase transitions and relationships are discussed from a structural point of view.
Resumo:
Like 6-phenoxy-5,12-naphthacenequinone (1), 6-[4-(2-( 8-hydroxyphenyl) isopropyl)phenoxy]-5, 12-naphthacenequinone (2) and 6-naphthyloxynaphthacenequinone (6) showed normal photochromism, The relative initial rates of trans to ana photoconversion were in the order: 1, 100; 2, 37; 6, 21, 6-[4-(Phenylazo)phenoxyl-5,12-naphthacenequinone (3), 6-[4-(p-ethoxyphenylazo) phenoxy]-5,12-naphthacenequinone (4), 6-[4-(p-nitrophenylazo)phenoxy]-5,12-naph cenequinone (5) had only slight W-induced photochromism for the phenoxynaphthacenequinone photochrome. 6-(2-Nitrosonaphthyloxy)-5,12-naphthacenequinone (7) exhibited no photochromism and underwent irreversible photoreaction.
Resumo:
Superconductor mixed oxides were often used as catalysts at higher temperature in gas phase oxidations, and considered not suitable for lower temperature reactions in the liquid-solid phase; here the catalysis of YBa2Cu3O7+/-x and Y2BaCuO5+/-x in the phenol hydroxylation at lower temperature with H2O2 as oxygen donor was studied, and found that the superconductor YBa2Cu3O7+/-x, has no catalytic activity for phenol hydroxylation, but Y2BaCuO5+/-x does, even has better catalytic activity and stability than most previously reported ones. With the studies of catalysis of other simple metal oxides and perovskite-like mixed oxides, a radical substitution mechanism is proposed and the experimental facts are explained clearly, and draw a conclusion that the perovskite-like mixed oxides with (AO)(ABO(3)) and (AO)2(ABO(3)) structure have better catalytic activity than the simple perovskite oxides with (ABO(3))(3) structure alone, and (AO) structure unit is the key for the mixed oxides to have the phenol hydroxylation activity. No pollution of this process is very important for its further industrial application.
Resumo:
A new class of liquid crystalline poly(ester-imide)s was synthesized by melt polycondensation. The basic physical properties of the resulting polymers were investigated by differential scanning calorimetry (d.s.c.), wide-angle X-ray diffraction (WAXD), polarized light microscopy, scanning electron microscopy (SEM), thermogravimetric analysis (t.g.a.), and rheological and mechanical testing. All of these poly(ester-imide)s were amorphous, as reflected by the results obtained from the WAXD and d.s.c. studies. Characterization and comparison of these poly(ester-imide)s with the corresponding polyesters suggested that the introduction of imide groups into the polyester chain is favourable for the formation of liquid crystalline phases. These results, together with the rheological studies, suggested that there existed a form of strong inter- or intramolecular electron donor-acceptor interaction which played a significant role in the liquid crystalline properties of the poly(ester-imide)s. The polymer products thus obtained exhibited good mechanical properties, with flexural strengths and moduli as high as 174 MPa and 6.9 GPa, respectively. The morphology of the fracture surfaces of extruded rod samples showed a sheet-like structure which consisted of ribbons and fibres oriented along the flow direction. The glass transition temperatures and thermal stabilities of the polymers were improved by the incorporation of imide groups. Copyright (C) 1996 Elsevier Science Ltd.
Resumo:
The synthesis and characterization of side-chain liquid crystalline (LC) polyacrylates containing para-nitroazobenzene (Pn) as mesogenic groups were described. Homopolymers with 3 and 4 carbon atoms in the spacers were non-LC polymers; for homopolymers with 6 carbon atoms in the spacer, nematic LC behavior was observed. Copolymers with acrylic acid as one component exhibited an S-Ad phase according to the WAXD results which showed the d/l of 1.4-1.54 for the copolymers with 3, 4, and 6 carbon atoms in the spacers. Considering the molecular structure as well as the WAXD results of the copolymers, the possible molecular arrangement in the smectic Sad phase was proposed, in which the smectic layers were composed of the antiparallel mesogens and the antiparallel arrangement was considered to be enhanced due to the H bond between - COOH and - NO2. The stress-induced orientational phenomena of Pn in the LC states was also discussed. (C) 1996 John Wiley & Sons, Inc.
Resumo:
A new kind of amphiphilic polymer(PAMC(16)B) has been synthesized where the amphiphilic moiety is attached as a side chain via the hydrophilic end to the polymer backbone. DSC, POM, and WAXD study revealed that the polysurfactant formed thermotropic liquid crystalline phase. The liquid crystalline domains appeared after annealed at the melt for a period of time, and evolved with annealing. It was indicated that the thermodynamic effect played a significant role on the self-aggregation of hydrophobic ends, so as to form liquid crystalline structure. X-ray investigation suggested that the mesophase structure could be described as smectic with lamellar type of packing, in which alkyl tails aggregated to form layer, A model of supermolecular structure was given.
Resumo:
A new chiral liquid crystal with Schiff base group has been prepared, The structure of liquid crystal was confirmed by elementary analyses and H-1 NMR. Its phase transition was investigated by polarized optical microscope, DSC and temperature-depending FTIR spectra. The results showed that the chiral Schiff base showed monotropic phases behavior in certain temperature range, the phase sequence is I-N-*-S-B-S-G-K on the cooling sequence.
Resumo:
The structure of quenched isotactic polypropylene (iPP) films, including samples etched with fuming nitric acid (FNA), has been studied by infrared (IR) spectra, wide-angle x-ray diffraction (WAXD), small-angle x-ray scattering (SAXS), and differential scanning calorimetry (DSC) measurements. The changes of IR, SAXS, DSC, and WAXD results induced by annealing for etched samples have been compared with those for unetched ones. The IR absorbance spectrum of the quenched iPP etched by FNA did not change. In addition, the SAXS intensity did not increase when these samples were annealed, indicating that the total (IR) crystallinity (i.e., the content of chain segments in the helical conformations) of the etched samples does not increase. However, WAXD patterns of the samples changed in a manner similar to those of the unetched one, from the original two blurred diffraction peaks to the sharp crystal patterns of alpha-form iPP, suggesting that the mesomorphic (or liquid crystal-like) phase has reorganized to alpha-form crystals. It is concluded that the change of WAXD of quenched iPP films during annealing results mainly from transformation of order in the mesomorphic phase, rather than only from an increase of crystal size. In other words, mesomorphic-form iPP is not constituted by any known crystals (such as alpha or beta crystals) in small sizes; its WAXD pattern reflects truly the degree of order in the mesomorphic phase.
Resumo:
Radial distribution function of CaCl2-KCl (1:2 mol) melt was measured by X-ray scattering of high temperature liquid. The nearest neighbour distances of Ca2+-Cl-, K+-Cl- and Cl--Cl- ionic pairs are 0.278, 0.306 and 0.380 nm, respectively, Discussion on the relation between structure and physicochemical properties in the melt was simply done in this paper.
Resumo:
A sensitive and efficient method for simultaneous determination of glutamic acid (Glu), gamma-amino-butyric acid (GABA), dopamine (DA), 5-hydroxytryptamine (5-HT) and 5-hydroxyindole acetic acid (5-HIAA) in rat endbrains was developed by high-performance liquid chromatography (HPLC) with fluorescence detection and on-line mass spectrometric identification following derivatization with 1,2-benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC). Different parameters which influenced derivatization and separation were optimized. The complete separation of five neurotransmitter (NT) derivatives was performed on a reversed-phase Hypersil BDS-C-18 column with a gradient elution. The rapid structure identification of five neurotransmitter derivatives was carried out by on-line mass spectrometry with electrospray ionization (ESI) source in positive ion mode, and the BCEOC-labeled derivatives were characterized by easy-to-interpret mass spectra. Stability of derivatives, repeatability, precision and accuracy were evaluated and the results were excellent for efficient HPLC analysis. The quantitative linear range of five neurotransmitters were 2.441-2 x 10(4) nM, and limits of detection were in the range of 0.398-1.258 nM (S/N = 3:1). The changes of their concentrations in endbrains of three rat groups were also studied using this HPLC fluorescence detection method. The results indicated that exhausting exercise could obviously influence the concentrations of neurotransmitters in rat endbrains. The established method exhibited excellent validity, high sensitivity and convenience, and provided a new technique for simultaneous analysis of monoamine and amino acid neurotransmitters in rat brain. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A novel norvancomycin-bonded chiral stationary phase (NVC-CSP) was synthesized by using the chiral selector of norvancomycin. The chiral separation of enantiomers of several dansyl-amino acids by high-performance liquid chromatography (HPLC) in the reversed-phase mode is described. The effects of some parameters, such as organic modifier concentration, column temperature, pH and flow rate of the mobile phase, on the retention and enantioselectivity were investigated. The study showed that ionic, as well as hydrophobic interactions were engaged between the analyte and macrocycle in this chromatographic system. Increasing pH of buffers usually improved the chiral resolution for dansyl-alpha-amino-n-butyric acid (Dns-But), dansyl-methionine (Dns-Met) and dansyl-threonine (Dns-Thr), but not for dansyl-glutamic acid (Dns-Glu) which contains two carboxylic groups in its molecular structure. The natural logarithms of selectivity factors (In alpha) of all the investigated compounds depended linearly on the reciprocal of temperature (1/T), most processes of enantioseparation were controlled enthalpically. Interestingly, the process of enantioseparation for dansyl-threonine was enthalpy-controlled at pH of 3.5, while at pH of 7.0, it was entropy-controlled according to thermodynamic parameters Delta(R,S)DeltaHdegrees and Delta(R,S)DeltaSdegrees afforded by Van't Hoff plots. In order to get baseline separation for all the solutes researched, norvancomycin was also used as a chiral mobile phase additive. In combination with the NVC-CSP remarkable increases in enanselectivity were observed for all the compounds, as the result of a "synergistic" effect. (C) 2003 Elsevier B.V. All rights reserved.