73 resultados para larval release
Resumo:
Novel intelligent hydrogels composed of biodegradable and pH-sensitive poly(L-glutamic acid) (PGA) and temperature sensitive poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (PNH) were synthesized and characterized for controlled release of hydrophilic drug. The influence of pH on the equilibrium swelling ratios of the hydrogels was investigated. A higher PNH content resulted in lower equilibrium swelling ratios. Although temperature had little influence on the swelling behaviors of the hydrogels, the changes of optical transmittance of hydrogels as a function of temperature were marked, which showed that the PNH part of hydrogel exhibited hydrophobic property at temperature above the lower critical solution temperature (LCST). The biodegradation rate of the stimuli-sensitive hydrogels in the presence of enzyme was directly proportional to the PGA content. Lysozyme was chosen as a model drug and loaded into the hydrogels.
Resumo:
In this paper, the polypyrrole (PPy) film modified electrodes are used as an electroreleasing reservoir. The electrochemically controlled release of 5-fluorouracil (5-FU) from a PPy film modified electrode to aqueous electrolytes is studied by the in situ probe beam deflection (PBD) method combined with cyclic voltammetry (CV) and chronoamperometry (CA). The PBD results reveal that the release of 5-FU from PPy film depends on the electrochemical redox process of the PPy film electrode. The released amount is controlled by the reduction potential and is proportional to the thickness of the film. The exchange of 5-FU anions with Cl- on an open circuit is slow on the time scale of minutes, but the release of 5-FU anions can proceed quickly at -0.6 V (vs Ag/AgCl). The amount of released 5-FU decreases with the time that the PPy film is soaked in aqueous solution. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
Polypyrrole (PPy) film was synthesized by anodic polymerization of pyrrole onto the surface of platinum electrode in the solution of sodium p-toluene sulfonate (NaTsO). When this film was oxidized anodically in an aqueous solution of adenosine triphosphatle (ATP), the ATP anions were incorporated into the film. Release of ATP From the film could be accomplished by reduction of the film in aqueous electrolyte solution. The total amount of ATP released from the film was determined by UV spectroscopic method.
Resumo:
Polypyrrole (PPy) film is synthesized by anodic polymerization of pyrrole onto the surface of a platinum electrode in the presence of toluene-p-sulfonate and the film is used for the controlled release of the neurotransmitter, adenosine 5'-triphosphate (ATP).
Resumo:
POPULATION-DYNAMICS; FOOD; FISH
Resumo:
Both MI and MII triploids were successfully produced by heat shock in Chinese shrimp Fenneropenaeus chinensis. The inducing conditions for MI and MII triploids were optimized. The highest inducing rate obtained for MI triploids reached more than 90%, and that for MII triploids reached nearly 100% at the nauplius stage as evaluated using flow cytometry. Comparisons of survival rates at larval stages between triploids and diploids or diploids experiencing treatment and diploids without treatment were performed. At larval stage from nauplii to postlarvae, heat shocks lowered survival at larval stages even if the ploidy was not changed. Ploidy did not affect shrimp larvae survival, and no significant difference was found in the survival of shrimp larvae between MI and MII triploids. Highly significant differences were observed in the morphology of triploids and diploids, and no apparent difference was found in the morphology of MI and MII triploids at the grow-out stages. Discriminating formulae for triploid and diploid shrimp at grow-out stage were developed and could be used to distinguish triploids from diploids based on morphological parameters. MI and MII triploids of shrimp have the potential to be used in aquaculture.
Resumo:
At 18 degrees C and 33 psu, 24 and 48 h LC50 values of cadmium (Cd) for red sea bream Pagrus major embryos were 9.8 and 6.6 mg l(-1), respectively, while 24,48, 72, and 96 h LC50 values for larvae were 18.9,16.2, 8.0, and 5.6 mg l(-1), respectively, indicating that embryos were more sensitive to Cd toxicity than larvae. Cd concentrations at >= 0.8 mg l(-1) led to low hatchability (0-90% in >= 0.8 mg l(-1) solutions vs. 97-100% in lower ones), delay in time to hatch, high mortality (38-100% vs. 1-10%), morphological abnormality (42-100% vs. 1-10%), reduced length (3.55-3.60 vs. 3.71-3.72 mm) in the embryos and larvae. They were Cd concentration dependent and potential biological significant endpoints for assessing the risk of Cd to aquatic organisms. Heart beat and yolk absorption of the larvae were significantly inhibited at some high concentrations but they were not as sensitive as other endpoints to Cd exposure. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Shell formation is one of the important events during larval development and metamorphosis in bivalves. However, the molecular mechanisms and environmental cues regulating shell initiation and growth are unclear. Here, we report that ferritin, a principal protein for biological iron storage and metabolism, might play a role in larval shell development of the bivalve mollusk Meretrix meretrix. A full-length ferritin subunit cDNA, named as MmeFer, was cloned and characterized. The MmeFer mRNA expression in different developmental stages, from trochophore to post larvae, was analyzed by real-time reverse transcription polymerase chain reaction (RT-PCR). MmeFer mRNA expression in larvae of later developmental stages increased at least 8-fold following trochophores. Moreover, the temporal and spatial expressions of MmeFer mRNA were examined by whole mount in situ hybridization. In the trochophore stage, MmeFer was detectable where it was supposed to be for shell initiation. In the later developmental stages, MmeFer was found near digestive glands and mantle that secret larval shell. MmeFer expression was also detected in larvae cultured in artificial seawater with different iron concentrations ranging from 0 to 100 mu M. These results suggest that ferritin may play a role in the shell formation of mollusks. (C) 2009 Elsevier Inc. All rights reserved.