69 resultados para interaction dominant


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical fluid model for JxB heating during the normal incidence by a short ultraintense linearly polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the JxB heating includes two distinct coupling processes depending on the initial laser and plasma conditions: for a moderate intensity (a <= 1), the ponderomotive force of the laser light can drive a large plasma wave at the point n(e)=4 gamma(0)n(c) resonantly. When this plasma wave is damped, the energy is transferred to the plasma. At higher intensity, the electron density is steepened to a high level by the time-independent ponderomotive force, n(e)> 4 gamma(0)n(c), so that no 2 omega resonance will occur, but the longitudinal component of the oscillating ponderomotive field can lead to an absorption mechanism similar to "vacuum heating." (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction of intense femtosecond laser pulses with hydrogen clusters has been experimentally studied. The hydrogen clusters were produced from expansion of high-pressure hydrogen gas (backed up to 8x10(6)Pa) into vacuum through a conical nozzle cryogenically cooled by liquid nitrogen. The average size of hydrogen clusters was estimated by Rayleigh scattering measurement and the maximum proton energy of up to 4.2keV has been obtained from the Coulomb explosion of hydrogen clusters under 2 x 10(16)W/cm(2) laser irradiation. Dependence of the maximum proton energy on cluster size and laser intensity was investigated, indicating the correlation between the laser intensity and the cluster size. The maximum proton energy is found to be directly proportional to the laser intensity, which is consistent with the theoretical prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical fluid model for vacuum heating during the oblique incidence by an ultrashort ultraintense p-polarized laser on a solid-density plasma is proposed. The steepening of an originally smooth electron density profile as the electrons are pushed inward by the laser is included self-consistently. It is shown that the electrons being pulled out and then returned to the plasma at the interface layer by the wave field can lead to a phenomenon like wave breaking since the front part of the returning electrons always move slower than the trailing part. This can lead to heating of the plasma at the expense of the wave energy. An estimate for the efficiency of laser energy absorption by the vacuum heating is given. It is also found that for the incident laser intensity parameter, a(L)> 0.5, the absorption rate peaks at an incident angle 45 degrees-52 degrees and it reaches a maximum of 30% at a(L)approximate to 1.5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of optical held and charge density in the interaction between ultraintense ultrashort pulse laser and plasma is studied by numerical computation. The plasma considered has an exponential density profile. which corresponds to isothermal expanding. Our calculation shows that electrons are pushed forward by the incident laser, but ions, due to their much greater inertia, remain stationary. The resulting charge displacement forms a strong electrostatic field in the plasma. After the interaction of laser pulse and plasma. electrostatic energy still exists even after the laser pulse and will be absorbed by the plasma finally. This serves as an explanation to the mechanism of laser energy deposited into plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions of oblique incident probe wave with oncoming ionization fronts have been investigated using moving boundary conditions. Field conversion coefficients of reflection, transmission and magnetic modes produced in the interactions are derived. Phase matching conditions at the front and frequency up-shifting formulas for the three modes are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The interaction between integrin macrophage differentiation antigen associated with complement three receptor function (Mac-1) and intercellular adhesion molecule-1 (ICAM-1), which is controlled tightly by the ligand-binding activity of Mac-1, is central to the regulation of neutrophil adhesion in host defense. Several "inside-out" signals and extracellular metal ions or antibodies have been found to activate Mac-1, resulting in an increased adhesiveness of Mac-1 to its ligands. However, the molecular basis for Mac-1 activation is not well understood yet. In this work, we have carried out a single-molecule study of Mac-1/ICAM-1 interaction force in living cells by atomic force microscopy (AFM). Our results showed that the binding probability and adhesion force of Mac-1 with ICAM-1 increased upon Mac-1 activation. Moreover, by comparing the dynamic force spectra of different Mac-1 mutants, we expected that Mac-1 activation is governed by the downward movement of its alpha 7 helix. (c) 2007 Elsevier Inc. All rights reserved.