140 resultados para induced motions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal fatigue behavior is one of the foremost considerations in the design and operation of diesel engines. It is found that thermal fatigue is closely related to the temperature field and temperature fluctuation in the structure. In this paper, spatially shaped high power laser was introduced to simulate thermal loadings on the piston. The incident Gaussian beam was transformed into concentric multi-circular beam of specific intensity distribution with the help of diffractive optical element (DOE), and the transient temperature fields in the piston similar to those under working conditions could be achieved by setting up appropriate loading cycles. Simulation tests for typical thermal loading conditions, i.e., thermal high cycle fatigue (HCF) and thermal shock (or thermal low cycle fatigue, LCF) were carried out. Several important parameters that affect the transient temperature fields and/or temperature oscillations, including controlling mode, intensity distribution of shaped laser, laser power, temporal profile of laser pulse, heating time and cooling time in one thermal cycle, etc., were investigated and discussed. The results show that as a novel method, the shaped high power laser can simulate thermal loadings on pistons efficiently, and it is helpful in the study of thermal fatigue behavior in pistons. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the laser induced thermal fatigue simulation test on pistons, the high power laser was transformed from the incident Gaussian beam into a concentric multi-circular pattern with specific intensity ratio. The spatial intensity distribution of the shaped beam, which determines the temperature field in the piston, must be designed before a diffractive optical element (DOE) can be manufactured. In this paper, a reverse method based on finite element model (FEM) was proposed to design the intensity distribution in order to simulate the thermal loadings on pistons. Temperature fields were obtained by solving a transient three-dimensional heat conduction equation with convective boundary conditions at the surfaces of the piston workpiece. The numerical model then was validated by approaching the computational results to the experimental data. During the process, some important parameters including laser absorptivity, convective heat transfer coefficient, thermal conductivity and Biot number were also validated. Then, optimization procedure was processed to find favorable spatial intensity distribution for the shaped beam, with the aid of the validated FEM. The analysis shows that the reverse method incorporated with numerical simulation can reduce design cycle and design expense efficiently. This method can serve as a kind of virtual experimental vehicle as well, which makes the thermal fatigue simulation test more controllable and predictable. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study of the interaction between shock wave and turbulent boundary layer induced by blunt fin has been carried out at M-infinity = 7.8 using oil flow visualization and simultaneous measurements of fluctuating wall pressure and heat transfer. This paper presents the effects of Mach number on turbulent separation behaviours induced by blunt fin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a series of experiments have been conducted in a U-shaped oscillatory flow tunnel, which provides a more realistic simulation than the previous actuator loading methods. Based on the experimental data of pipe displacement with two different constraint conditions (freely laid pipelines and anti-rolling pipelines), three characteristic times in the process of pipeline losing stability are identified. The effects of sand size on the pipeline lateral stability are examined for freely laid pipelines. The empirical relationships between non-dimensional pipeline weight (G) and Fronde number (Fr-b) are established for different constraint conditions, which will provide a guide for engineering practice. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the size effect on melting of metal nanoclusters by molecular dynamics simulation and thermo dynamic theory based on Kofman's melt model. By the minimization of the free energy of metal nanoclusters with respect to the thickness of the surface liquid layer, it has been found that the nanoclusters of the same metal have the same premelting temperature T-pre = T-0 - T-0(gamma(su) - gamma(lv) - gamma(sl))/(rhoLxi) (T-0 is the melting point of bulk metal, gamma(sv) the solid-vapour interfacial free energy, gamma(sl) the liquid-vapour interfacial free energy, gamma(sl),l the solid-liquid interfacial free energy, p the density of metal, L the latent heat of bulk metal, and xi the characteristic length of surface-interface interaction) to be independent of the size of nanoclusters, so that the characteristic length of a metal can be obtained easily by T-pre, which can be obtained by experiments or molecular dynamics (MD) simulations. The premelting temperature T-pre of Cu is obtained by AID simulations, then xi is obtained. The melting point T-cm is further predicted by free energy analysis and is in good agreement with the result of our MD simulations. We also predict the maximum premelting-liquid width of Cu nanoclusters with various sizes and the critical size, below which there is no premelting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Laser-induced well-ordered and controllable wavy patterns are constructed in the deposited metal thin film. The micrometer-sized structure and orientation of the wavy patterns can be controlled via scanning a different size of rectangle laser spot on the films. Ordered patterns such as aligned, crossed, and whirled wave structures were designed over large areas. This patterning technique may find applications in both exploring the reliability and mechanical properties of thin films, and fabricating microfluidic devices. (C) 2004 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper describes a numerical two-way coupling model for shock-induced laminar boundary-layer flows of a dust-laden gas and studies the transverse migration of fine particles under the action of Saffman lift force. The governing equations are formulated in the dilute two-phase continuum framework with consideration of the finiteness of the particle Reynolds and Knudsen numbers. The full Lagrangian method is explored for calculating the dispersed-phase flow fields (including the number density of particles) in the regions of intersecting particle trajectories. The computation results show a significant reaction of the particles on the two-phase boundary-layer structure when the mass loading ratio of particles takes finite values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unlike previous mechanical actuator loading methods, in this study, a hydrodynamic loading method was employed in a flow flume for simulating ocean currents induced submarine pipeline stability on a sandy seabed. It has been observed that, in the process of pipeline losing lateral stability in currents, there usually exist three characteristic times: (1) onset of sand scour; (2) slight lateral displacement of pipeline; and (3) breakout of pipeline. An empirical linear relationship is established between the dimensionless submerged weight of pipeline and Froude number for describing pipeline lateral stability in currents, in which the current-pipe-soil coupling effects are reflected. Scale effects are examined with the method of "modeling of models," and the sand particle size effects on pipeline stability are also discussed. Moreover, the pipeline stability in currents is compared with that in waves, which indicates that the pipeline laid directly upon the sandy seabed is more laterally stable in currents than in waves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results of a series of centrifuge model tests performed to study the behavior of suction bucket foundations for a tension leg platform in the Bohai Bay, China. The target lateral loadings were from ice-sheet-induced structural vibrations at a frequency of 0.8-1.0 Hz. The results indicate that excess pore water pressures reach the highest values within a depth of 1.0-1.5 in below the mud line. The pore pressures and the induced settlement and lateral displacement increase with the amplitude of the cyclic loading. Two failure modes were observed: liquefaction in early excitations and settlement-induced problems after long-term excitations. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal stress wave and spallation in aluminium alloy exposed to a high fluency and low energy electron beams are studied theoretically. A simple model for the study of energy deposition of electrons in materials is presented on the basis of some empirical formulae. Under the stress wave induced by energy deposition, microcracks and/or microvoids may appear in target materials, and in this case, the inelastic volume deformation should not vanish. The viscoplastic model proposed by Bodner and Partom with corresponding Gurson's yield function requires modification for this situation. The new constitutive model contains a scalar field variable description of the material damage which is taken as the void volume fraction of the polycrystalline material. Incorporation of the damage parameter permits description of rate-dependent, compressible, inelastic deformation and ductile fracture. The melting phenomenon has been observed in the experiment, therefore one needs to take into account the melting process in the intermediate energy deposition range. A three-phase equation of state used in the paper provides a more detailed and thermodynamical description of metals, particularly, in the melting region. The computational results based on the suggested model are compared with the experimental test for aluminium alloy, which is subjected to a pulsed electron beam with high fluency and low energy. (C) 1997 Elsevier Science Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new kind of failure mode is observed in circular brass foils whose peripheries are fixed and whose surfaces are subjected to a long pulsed laser over a central region. The failure is classified into three stages; they are referred to as thermal bulging, localized shear deformation and perforation by plugging. A distinct feature of the failure mode is that bulging and plugging occurred in the direction opposite to the incident laser beam. The failure mode is different from the well-known types of laser induced material damage, such as spallation, melting and/or vaporization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the shock propagation through a dilute gas-particle suspension in an aligned baffle system. Numerical solution to two-phase flows induced by a planar shock wave is given based on the two-continuum model with interphase coupling. The governing equations are numerically solved by using high-resolution schemes. The computational results show the shock reflection and diffraction patterns, and the shock-induced flow fields in the 4-baffle system filled with the dusty gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new kind of failure induced by long pulsed laser, named as reverse plugging effect (RPE), was experimentally observed in thin foil of brass. The whole failure process can be divided into three stages, namely thermal reverse bulging, shear deformation localization and reverse perforation. In this paper, a description of experimental and theoretical study on this newly discovered phenomenon is presented in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nucleation of microdamage under dynamic loading was investigated through planar impact experiments accomplished with a light gas gun. The microscopic observation of recovered and sectioned specimens showed that microcracks were nucleated only by cracking of brittle particles inside material. However, for comparison the in situ static tensile tests on the same material conducted with a scanning electron microscope showed that the microcracks were nucleated by many forms those were fracture of ductile matrix, debonding particles from matrix and cracking of brittle particles. The quantitative metallographic observations of the specimens subjected to impact loading showed that most of the cracked particles were situated on grain boundaries of the aluminium matrix. These facts suggested the concept of critical size and incubation time of submicroscopic cavities in the dynamic case and the mechanism of embryo-damage induced nucleation by fracture of brittle particles in the aluminium alloy under impact loading was proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical simulation of damage evolution in a two-dimensional system of micocracks is presented. It reveals that the failure is induced by a cascade of coalescences of microcracks, and the fracture surface appears fractal. A model of evolution-induced catastrophe is introduced. The fractal dimension is found to be a function of evolution rule only. This result could qualitatively explain the correlation of fractal dimension and fracture toughness discovered in experiments.