199 resultados para gold photocatalyst, silver photocatalyst, organic degradation, selective oxidation, visible light, ultraviolet light, surface plasmon resonance, interband transition, formaldehyde, methanol, dye, phenol, alcohol, aldehyde


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to develop a novel high-throughput tool for monitoring carbohydrate-protein interactions, we prepared carbohydrate or glycoprotein microarrays by immobilizing amino modified carbohydrates on aldehyde-derivatized glass slides or glycoprotein on epoxide-derivatized glass slides and carried out lectin binding experiments by using these microarrays, respectively. The interaction events are marked by attachment of gold nanoparticles followed by silver deposition for signal enhancement. The attachment of the gold nanoparticles is achieved by standard avidin-biotin chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report, gold nanoparticles (AuNPs) labeled by Raman reporters (AuNPs-R6G) were assembled on glass and used as the seeds to in situ grow silver-coated nanostructures based on silver enhancer solution, forming the nanostructures of AuNPs-R6G@Ag, which were characterized by scanning electron microscopy (SEM) and UV-visible spectroscopy. More importantly, the obtained silver-coated nanostructures can be used as a surface enhancement Raman scattering (SERS) substrate. The different SERS activities can be controlled by the silver deposition time and assembly time of AuNPs-R6G on glass. The results indicate that the maximum SERS activity could be obtained on AuNPs-R6G when these nanostructures were assembled on glass for 2 h with silver deposition for 2 min.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Depending on their size, shape. degree of aggregation and nature of the protecting organic shells on their surface, gold nanoparticles (AuNPs) can appear red, blue and other colors and emit bright resonance light scattering of various wavelengths. Because of this unique optical property. AuNPs have been extensively explored as probes for sensing/imaging a wide range of analytes/targets, such as heavy metallic cations, nucleic acids, proteins, cells, etc. Since their initial discovery, novel synthetic methods have led to precise control over particle size, shape and stability, thus allowing the modification of a wide variety of ligands on the AuNP surfaces to meet different experimental conditions. This review discusses the synthesis and applications of functionalized AuNPs in chemical sensing and imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles (3.1-5.0 nm in size) surface-derivatized with both electroactive and nonelectroactive self-assembled monolayers were synthesized. The surface-derivatized electroactive particles can be easily oxidized/reduced at an electrode surface based on the diffusion-controlled current-voltage curve observed in cyclic voltammetry measurements. Spectroelectrochemical investigation demonstrated that the maximum absorbance of the nanoparticles in their oxidized state red-shifted compared with their reduced state to a different extent according to their size distribution. In the case of the particles surface-derivatized with nonelectroactive monolayers, much less shift was observed. This study showed that surface plasmon absorbance of gold nanoparticles was not only related to core charge states but was also influenced by surface charge states as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The preparative procedure of a kind of phospholipid/alkanethiol bilayers on a planar macroelectrode was copied to the as-prepared gold colloid electrodes. The electrochemical and spectral results show that the bilayers on colloid electrodes are interdigited, which are different from their 2-D counterparts on a planar macroelectrode.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report an easy synthesis of highly branched gold particles through a seed-mediated growth approach in the presence of citrate. The addition of citrate in the growth solution is found to be crucial for the formation of these branched gold particles. Their size can be varied from 47 to 185 nm. The length of the thumb-like branch is estimated to be between about 5 and 20 nm, and changes slightly as the particle size increases. Owing to these obtuse and short branches, their surface plasmon resonance displays a marked red-shift with respect to the normal spherical particles. These branched gold particles exhibit stronger SERS activity than the non-branched ones, which is most likely related to these unique branching features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomolecule template gives new opportunities for the fabrication of novel materials with special features. Here we report a route to the formation of DNA-polyaniline (PAn) complex, using immobilized DNA as a template. A gold electrode was first modified with monolayer of 2-aminoethanethiol by self-assembly. Thereafter, by simply immersing the gold electrode into DNA solution, DNA molecules can be attached onto the gold surface, followed by the DNA-templated assembly and electropolymerization of protonated aniline. The electrostatic interactions between DNA and aniline can keep the aniline monomers aligning along the DNA strands. Investigations by surface plasmon resonance (SPR), electrochemistry and reflection absorption UV/Vis-Near IR spectroscopy substantially convince that PAn can be electrochemically grown around DNA template on gold surface. This work may be provides fundamental aspects for building PAn nanowires with DNA as template on solid surface if DNA molecules can be individually separated and stretched.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adsorption of a monolayer of didecanoyl-L-alpha-phosphatidylcholine (DDPC) from dispersions of small unilamellar vesicles onto hydrophobic surfaces was investigated by mean of cyclic voltammetry and impedance spectroscopy. The hydrophobic surfaces were self-assembled monolayers of 2-mereapto-3-n-octylthiophene (MOT) on gold. One characteristic of the MOT monolayer is its permeability to organic molecules in aqueous solution, thus providing a more energetically favorable hydrophobic surface for the addition of phospholipid vesicles. The kinetics of the lipid monolayer formation were followed by measuring the time-dependent interfacial capacitance. Unusual values of thickness and capacitance of the MOT/ DDPC bilayers were observed. An interdigitating conformation of the bilayer structure was proposed to interpret the experimental results, The horseradish peroxidase reconstituted into the bilayer demonstrated the expected protein activity, showing practical use in research and in biosensor application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemical properties of AlxGa1-xN surfaces exposed to air for different time periods are investigated by atomic force microscopy (AFM), photoluminescence (PL) measurement and X-ray photoelectron spectroscopy (XPS). PL and AFM results show that AlxGa1-xN samples exhibit different surface characteristics for different air-exposure times and Al contents. The XPS spectra of the Al 2p and Ga 2p core levels indicate that the peaks shifted slightly, from an Al-N to an Al-O bond and from a Ga-N to a Ga-O bond. All of these results show that the epilayer surface contains a large amount of Ga and Al oxides. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical properties of Au nanoparticles deposited on thermochromic thin films of VO2 are investigated using spectroscopy. A localized modification on the transmittance spectrum of VO2 film is formed due to the presence of Au nanoparticles which exhibit localized surface plasmon resonance (LSPR) in the visible-near IR region. The position of the modification wavelength region shows a strong dependence on the Au mass thickness and shifts toward the red as it increases. On the other hand, it was found that the LSPR of Au nanoparticles can be thermally tunable because of the thermochromism of the supporting material of VO2. The LSPR wavelength, lambda(SPR), shifts to the blue with increasing temperature, and shifts back to the red as temperature decreases. A fine tuning is achieved when the temperature is increased in a stepwise manner.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal tuning of the localized surface plasmon resonance (LSPR) of Ag nanoparticles on a thermochromic thin film of VO2 was studied experimentally. The tuning is strongly temperature dependent and thermally reversible. The LSPR wavelength lambda(SPR) shifts to the blue with increasing temperature from 30 to 80 degrees C, and shifts back to the red as temperature decreases. A smart tuning is achievable on condition that the temperature is controlled in a stepwise manner. The tunable wavelength range depends on the particle size or the mass thickness of the metal nanoparticle film. Further, the tunability was found to be enhanced significantly when a layer of TiO2 was introduced to overcoat the Ag nanoparticles, yielding a marked sensitivity factor Delta lambda(SPR)/Delta n, of as large as 480 nm per refractive index unit (n) at the semiconductor phase of VO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multicolored optical active planes have been fabricated with magnetron sputter method coupled with selective masking technique. The plane is multilayer structured with Ag nanoparticles and TiO2 thin layer as the building blocks. It was found that the formed multilayer can be readily wavelength multiplexed by simply overlapping several nano-Ag/TiO2 layered structures, each of which may have different surface plasmon resonance wavelength. Unlike high order multiple resonances of large particles each of the multiplexing wavelengths in such a system is separately tunable. Importantly, it reveals that modification of the TiO2 layer thickness generates a fine tuning of the resonance wavelength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of a potassium overlayer on nitridation and oxidation of the InP(100) surface is investigated by core-level and valence-band photoemission spectroscopy using synchrotron radiation. In comparison with the K-promoted nitridation of the InP(110) surface obtained by cleavage in situ, we found that the promotive effect for the InP(100) surface cleaned by ions bombardment is much stronger and that the nitridation products consist of two kinds of complexes: InPNx and InPNx+y. The results confirmed that surface defects play an important part in the promotive effect. Furthermore, in contrast with K-promoted oxidation of InP(100) where bonding is observed between indium and oxygen, indium atoms did not react directly with nitrogen atoms during the K-promoted nitridation of InP(100). (C) 1995 American Vacuum Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We theoretically demonstrate a polarization-independent nanopatterned ultra-thin metallic structure supporting short-range surface plasmon polariton (SRSPP) modes to improve the performance of organic solar cells. The physical mechanism and the mode distribution of the SRSPP excited in the cell device were analyzed, and reveal that the SRSPP-assisted broadband absorption enhancement peak could be tuned by tailoring the parameters of the nanopatterned metallic structure. Three-dimensional finite-difference time domain calculations show that this plasmonic structure can enhance the optical absorption of polymer-based photovoltaics by 39% to 112%, depending on the nature of the active layer (corresponding to an enhancement in short-circuit current density by 47% to 130%). These results are promising for the design of organic photovoltaics with enhanced performance.