50 resultados para fractured bedrock aquifers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mudstone reservoir is a subtle reservoir with extremely inhomogeneous, whose formation is greatly related to the existence of fracture. For this kind of reservoir, mudstone is oil source rock, cover rock and reservoir strata, reservoir type is various, attitude of oil layer changes greatly, and the distribution of oil and gas is different from igneous or clastic rock reservoir as well as from carbonate reservoir of self-producing and self-containing of oil and gas. No mature experience has been obtained in the description, exploration and development of the reservoir by far. Taking Zhanhua depression as an example, we studied in this thesis the tectonic evolution, deposit characteristics, diagenesis, hydrocarbon formation, abnormal formation pressure, forming of fissure in mudstone reservoir, etc. on the basis of core analysis, physical simulation, numerical simulation, integrated study of well logging and geophysical data, and systematically analyzed the developing and distributing of mudstone fissure reservoir and set up a geological model for the formation of mudstone fissure reservoir, and predicted possible fractural zone in studied area. Mudstone reservoir mainly distributed on the thrown side of sedimentary fault along the sloping area of the petroleum generatiion depression in Zhanhua depression. Growing fault controlled subsidence and sedimentation. Both the rate of subsidence and thickness of mudstone are great on the thrown side of growing fault, which result in the formation of surpressure in the area. The unlocking of fault which leads to the pressure discharges and the upward conduct of below stratum, also makes for the surpressure in mudstone. In Zhanhua depression, mudstone reservior mainly developed in sub-compacted stratum in the third segment of Shahejie formation, which is the best oil source rock because of its wide spread in distribution, great in thickness, and rich in organic matter, and rock types of which are oil source mudstone and shale of deep water or semi-deep water sediment in lacustrine facies. It revealed from core analysis that the stratum is rich in limestone, and consists of lamina of dark mudstone and that of light grey limestone alternately, such rock assemblage is in favor of high pressure and fracture in the process of hydrocarbon generation. Fracture of mudstone in the third segment of Shahejie formation was divided into structure fracture, hydrocarbon generation fracture and compound fracture and six secondary types of fracture for the fist time according to the cause of their formation in the thesis. Structural fracture is formed by tectonic movement such as fold or fault, which develops mainly near the faults, especially in the protrude area and the edge of faults, such fracture has obvious directivity, and tend to have more width and extension in length and obvious direction, and was developed periodically, discontinuously in time and successively as the result of multi-tectonic movement in studied area. Hydrocarbon generation fracture was formed in the process of hydrocarbon generation, the fracture is numerous in number and extensively in distribution, but the scale of it is always small and belongs to microfracture. The compound fracture is the result of both tectonic movement and hydrocarbon forming process. The combination of above fractures in time and space forms the three dimension reservoir space network of mudstone, which satellites with abnormal pressure zone in plane distribution and relates to sedimentary faces, rock combination, organic content, structural evolution, and high pressure, etc.. In Zhanhua depression, the mudstone of third segment in shahejie formation corresponds with a set of seismic reflection with better continuous. When mudstone containing oil and gas of abnormal high pressure, the seismic waveform would change as a result of absorb of oil and gas to the high-frequency composition of seismic reflection, and decrease of seismic reflection frequency resulted from the breakage of mudstone structure. The author solved the problem of mudstone reservoir predicting to some degree through the use of coherent data analysis in Zhanhua depression. Numerical modeling of basin has been used to simulate the ancient liquid pressure field in Zhanhua depression, to quantitative analysis the main controlling factor (such as uncompaction, tectonic movement, hydrocarbon generation) to surpressure in mudstone. Combined with factual geologic information and references, we analyzed the characteristic of basin evolution and factors influence the pressure field, and employed numerical modeling of liquid pressure evolution in 1-D and 2-D section, modeled and analyzed the forming and evolution of pressure in plane for main position in different periods, and made a conclusion that the main factors for surpressure in studied area are tectonic movement, uncompaction and hydrocarbon generation process. In Zhanhua depression, the valid fracture zone in mudstone was mainly formed in the last stage of Dongying movement, the mudstone in the third segment of Shahejie formation turn into fastigium for oil generation and migration in Guantao stage, and oil and gas were preserved since the end of the stage. Tectonic movement was weak after oil and gas to be preserved, and such made for the preserve of oil and gas. The forming of fractured mudstone reservoir can be divided into four different stages, i.e. deposition of muddy oil source rock, draining off water by compacting to producing hydrocarbon, forming of valid fracture and collecting of oil, forming of fracture reservoir. Combined with other regional geologic information, we predicted four prior mudstone fracture reservoirs, which measured 18km2 in area and 1200 X 104t in geological reserves.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is belonging to Chinese Petrochemical Industry Corporation's key project. Although it is very difficult, it has important theoretical and practical value. Its targets is to make lithological petroleum pool exploration great breakthrough in Dongying sag, by applying advanced theories, the last-minute methods and technology in highly explored zones. By using synthetically multi- discipline theories, methods and technology such as petroleum geology, sedimentology, structure geology, rock mechanics, dynamics of petroleum pool formation, geochemistry, geophysics and so on, and by making full use of computer , the process of petroleum pool forming and distribution rules of lithological petroleum pools have been thoroughly investigated and analyzed in sharp-slope, gentle-slope as well as low-lying region of Dongying sag including dynamic and static. With the study of tectonic stress field, fluid potential field and pressure field, we revealed dynamics condition, distribution rule, control factors and petroleum forming mechanism of lithological pool, and established the forming mode of lithological pool of Dongying sag. The main conclusion as follow: Strata framework, structure framework and sedimentary system of Dongying sag have been established which were the basis of petroleum prediction. There are three kinds of oil source which were from Es4,Es3 and mixed type, also three petroleum forming phases which were the telophase of Dongying stage, Guantao stage and Minghuazhen group, which occur in different geological environment. By using of most advanced numerical modeling software, the space distribution and time evolve of stress field and fluid potential field have been revealed from Esl up to the present. The region with low earth stress and low fluid potential were enrichment region of lithological petroleum pool and fault-block pool. The dynamics mechanism of Lithological petroleum pool in Dongying sag was collocating seal box, abnormity pressure, index number of petroleum forming and static factors on time and space, which was the most important factor of controlling petroleum pool forming, distribution and enrichment. The multi phase active and evolve of seal and unseal about different order fault were main factors of controlling petroleum pool forming of Dongying sag, which have important value for predicting lithological petroleum pool. It is revealed the lithological petroleum pool forming mode that included respective character, forming mechanism and distribution rule in four structural belt, which was a base for lithological petroleum pool prediction. The theories, technology and methods of studying, description, characterize and prediction lithological petroleum pool were established, which have important popularization value. Several lithological pool have been predicted in stress transform, zone, abrupt slope zone, fractured surface changed zone, tosional stress growth zone and abnormity pressure zone with noticeable economic benefit after exploration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the progress of prospecting, the need for the discovery of blind ore deposits become more and more urgent. To study and find out the method and technology for the discovery of blind and buried ores is now a priority task. New geochemical methods are key technology to discover blind ores. Information of mobile components related to blind ores were extracted using this new methods. These methods were tested and applied based on element' s mobile components migrating and enriched in geophysical-geochemical process. Several kinds of partial extraction techniques have tested based on element' s occurrence in hypergenic zone. Middle-large scale geochemical methods for exploration in forest and swamp have been tested. A serious of methods were tested and applied effetely about evaluation of regional geochemical anomaly, 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system instead of the normal net. 1. Element related with ores can be mobiled to migrate upwards and be absorpted by surface soil. These abnomal components can be concentrated by natural or artificial methods. These trace metalic ions partially exist in dissovlvable ion forms of active state, and partially have been absorbed by Fe-Mn oxide, soil and organic matter in the soil so that a series of reaction such as complex reaction have take place. Employing various partial extraction techniques, metallic ions related with the phase of the blind ores can be extracted, such as the technique of organic complex extraction, Fe-Mn oxide extraction and the extraction technique of metallic ions of various absorption phases. 2.1:200000 regional geochemical evaluation anomaly methods: Advantageous ore-forming areas were selected firstly. Center, concentration, morphological feature, belt of anomaly were choosed then. Geological and geochemical anomalies were combined. And geological and geochemical background information were restrained. Xilekuduke area in Fuyun sheet , Zhaheba area in Qiakuerte sheet, the west-north part in Ertai sheet and Hongshanzui anomaly in Daqiao sheet were selected as target areas, in Alertai, in the north of Xinjiang. in Xilekuduke area, 1:25000 soil geochemical methods sampling based on the net in dendritic water system was carried out. Cu anomaly and copper mineralization were determined in the center area. Au , Cu anomalies and high polarization anomaly were determined in the south part. Prospecting by primary halo and organic complex extraction were used to prognosis blind ore in widely rang outcrop of bedrock. 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system were used in transported overburden outside of mining area. Shallow seismic method and primary halo found a new blind orebody in mining area. A mineralization site was fou and outside of Puziwan gold mine, in the north of Shanxi province. Developing middle-large scale geochemical exploration method is a key technique based 1:200000 regional geochemical exploration. Some conditions were tested as Sampling density , distribution sites of sample, grain size of sample and occurrence of element for exploration. 1:50000 exploration method was advanced to sample clast sediment supplement clast sediment in valley. 1:25000 bedrock or soil geochemical methods sampling based on the net in dendritic water system was applied to sample residual material in A or C horizon. 1:2000 primary or soil halo methods used to check anomalies and determine mineralization. Daliang gold mineralization in the northern Moerdaoga was found appling these methods. Thermomagnetic method was tested in miniqi copper-polymetallic ore. Process methods such as grain size of sample, heated temperature, magnetic separating technique were tested. A suite of Thermomagnetic geochemical method was formed. This method was applied in Xiangshan Cu~Ni deposit which is cover by clast or Gobi in the eastern Xinjiang. Element's content and contrast of anomaly with Thermomagnetic geochemical method were higher than soil anomaly. Susceptibility after samples were heated could be as a assessment conference for anomaly. In some sectors thermo-magnetic Cu, Ni, Ti anomalious were found outside deposits area. There were strong anomal ies response up ore tested by several kind of partial extraction methods include Thermomagnetic, enzyme leach and other partial extractions in Kalatongke Cu-Ni deposit in hungriness area in the northern of Xinjiang. Element's anomalies of meobile were mainly in Fe-Mn oxide and salt. A Copper mineralization site in Xilekuduke anomaly area had been determined. A blind ore was foung by shallow seismic and geochemical method and a mineralization site was found outside this mining area in Puziwan gold deposit in shanxi province. A Gold mineralization site was found by 1:50000 geochemical exploration in Daliang, Inner Mongolia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned of the I0Be and 26A1 exposure ages of bedrocks in the Grove Mountains (GMs), inland of East Antarctica, and in the Larsemann Hills, peripheral alongshore of East Antarctica, respectively. The results of our study indicate that the higher bedrock samples in two profiles in the GMs have minimum exposure ages of-2 Ma, and their 26Al/10Be can be projected into the erosion island, which means they only have simple exposure history. The actual exposure ages may be mid-late Pliocene because the bedrocks should have erosion. The relationship between the altitudes and cosmogenic nuclide concentrations of those higher samples suggests that they have not reached secular equilibrium, means that a higher than -2300m East Antarctic Ice Sheet (EAIS) existed in the GMs before mid-Pliocene, and decreased monotonously for a period since mid-Pliocene. Lower samples of the two profiles have much younger exposure ages, and had been covered at least once obviously implicated by that their 26Al/10Be are projected down to the erosion island. Using a 10Be-26Al project figure to determine the history of the GMs samples shows that the lower samples have minimum total initial exposure and cover time of 1.7-2.8Ma, suggesting that those samples were exposed initially since about late Pliocene too, and the interior EAIS fluctuated after late Plicoene obviously. The altitudes and exposure ages of all the GMs samples indicate that the ice surface level of the interior EAIS in the GMs was >2300m during or before mid Pliocene (more than 200m higher than present ice surface level), and only rose to -2200m during the fluctuation occurred after late Pliocene, thus the elevation of the interior EAIS in the GMs after mid-Pliocene was never higher than during or before mid Pliocene even during the Quaternary Glacial Maximum. According to data from the GMs and other parts of East Antarctica, a larger East Antarctic Ice Sheet existed before mid-Pliocene, thus the elevation decrease of interior EAIS in the GMs after mid Pliocene may be a director of volume decrease of the EAIS. Since the Antarctic climate has a cooling trend since ~3Ma, similar to the global climate change, the volume decrease of the EAIS since mid-Pliocene may beause of moisture supply decrease directly rather than atmosphere temperature change. As for the Larsemann Hills, samples farther to the glacier have exposure age of 40~50ka, means they exposed in the early time of Last Glacier Cycle, obviously earlier than the Last Glacial Maximum (LGM). Samples nearer to the glacier have exposure ages younger than LGM. Thus, different to the GMs, exposure ages of the Larsemann Hills samples have more obvious relationship to their distance from the glacier margin rather than to the altitudes of the samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The technique of energy extraction using groundwater source heat pumps, as a sustainable way of low-grade thermal energy utilization, has widely been used since mid-1990's. Based on the basic theories of groundwater flow and heat transfer and by employing two analytic models, the relationship of the thermal breakthrough time for a production well with the effect factors involved is analyzed and the impact of heat transfer by means of conduction and convection, under different groundwater velocity conditions, on geo-temperature field is discussed.A mathematical model, coupling the equations for groundwater flow with those for heat transfer, was developed. The impact of energy mining using a single well system of supplying and returning water on geo-temperature field under different hydrogeological conditions, well structures, withdraw-and-reinjection rates, and natural groundwater flow velocities was quantitatively simulated using the finite difference simulator HST3D. Theoretical analyses of the simulated results were also made. The simulated results of the single well system indicate that neither the permeability nor the porosity of a homogeneous aquifer has significant effect on the temperature of the production segment provided that the production and injection capability of each well in the aquifers involved can meet the designed value. If there exists a lower permeable interlayer, compared with the main aquifer, between the production and injection segments, the temperature changes of the production segment will decrease. The thicker the interlayer and the lower the interlayer permeability, the longer the thermal breakthrough time of the production segment and the smaller the temperature changes of the production segment. According to the above modeling, it can also be found that with the increase of the aquifer thickness, the distance between the production and injection screens, and/or the regional groundwater flow velocity, and/or the decrease of the production-and-reinjection rate, the temperature changes of the production segment decline. For an aquifer of a constant thickness, continuously increase the screen lengths of production and injection segments may lead to the decrease of the distance between the production and injection screens, and the temperature changes of the production segment will increase, consequently.According to the simulation results of the single well system, the parameters, that can cause significant influence on heat transfer as well as geo-temperature field, were chosen for doublet system simulation. It is indicated that the temperature changes of the pumping well will decrease as the aquifer thickness, the distance between the well pair and/or the screen lengths of the doublet increase. In the case of a low permeable interlayer embedding in the main aquifer, if the screens of the pumping and the injection wells are installed respectively below and above the interlayer, the temperature changes of the pumping well will be smaller than that without the interlay. The lower the permeability of the interlayer, the smaller the temperature changes. The simulation results also indicate that the lower the pumping-and-reinjection rate, the greater the temperature changes of the pumping well. It can also be found that if the producer and the injector are chosen reasonably, the temperature changes of the pumping well will decline as the regional groundwater flow velocity increases. Compared with the case that the groundwater flow direction is perpendicular to the well pair, if the regional flow is directed from the pumping well to the injection well, the temperature changes of the pumping well is relatively smaller.Based on the above simulation study, a case history was conducted using the data from an operating system in Beijing. By means of the conceptual model and the mathematical model, a 3-D simulation model was developed and the hydrogeological parameters and the thermal properties were calibrated. The calibrated model was used to predict the evolution of the geo-temperature field for the next five years. The simulation results indicate that the calibrated model can represent the hydrogeological conditions and the nature of the aquifers. It can also be found that the temperature fronts in high permeable aquifers move very fast and the radiuses of temperature influence are large. Comparatively, the temperature changes in clay layers are smaller and there is an obvious lag of the temperature changes. According to the current energy mining load, the temperature of the pumping wells will increase by 0.7°C at the end of the next five years. The above case study may provide reliable base for the scientific management of the operating system studied.