182 resultados para fracture mechanics


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zero thickness crack tip interface elements for a crack normal to the interface between two materials are presented. The elements are shown to have the desired r(lambda-1) (0 < lambda < 1) singularity in the stress field at the crack tip and are compatible with other singular elements. The stiffness matrices of the quadratic and cubic interface element are derived. Numerical examples are given to demonstrate the applicability of the proposed interface elements for a crack perpendicular to the bimaterial interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The three-dimensional transient wave response problem is presented for an infinite elastic medium weakened by a plane crack of infinite length and finite width. Tractions are applied suddenly to the crack, which simulates the case of impact loading. The integral transforms are utilized to reduce the problem to a standard Fredholm integral equation in the Laplace transform variable and sequentially invert the Laplace transforms of the stress components by numerical inversion method. The dynamic mode I stress intensity factors at the crack tip are obtained and some numerical results are presented in graphical form.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The elastic plane problem of a rigid co-circular arc inclusion under arbitrary loads is dealt with. Applying Schwarz's reflection principle integrated with the analysis of the singularity of complex stress functions, the general solution of the problem is found and several closed-form solutions to some problems of practical importance are given. Finally, the stress distribution at the arc inclusion end is examined and a comparison is made with that of the rigid line inclusion end to show the effect of curvature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanical behavior of dual phase steel plates is affected by internal stresses created during martensite transformation. Analytical modelling of this effect is made by considering a unit cell made of martensite inclusion in a ferrite matrix. A large strain finite element analysis is then performed to obtain the plane stress deformation state. Displayed numerically are the development of the plastic zone and distribution of local state of stress and strain. Studied also are the shape configuration of the martensite (hard-phase) that influences the interfacial condition as related to stress transmission and damage. Internal stresses are found to enhance the global flow stress after yield initiation in the ferrite matrix. Good agreement is obtained between the analytical results and experimental observations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a micromechanics analysis of the elastic solids weakened by a large number of microcracks in a plane problem. A new cell model is proposed. Each cell is an ellipse subregion and contains a microcrack. The effective moduli and the stress intensity factors for an ellipse cell are obtained. The analytic closed formulas of concentration factor tensor for an isotropic matrix containing an anisotropic inclusion are derived. Based on a self-consistent method, the effective elastic moduli of the solids weakened by randomly oriented microcracks are obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Examined in this work is the anti-plane stress and strain near a crack in a material that softens beyond the elastic peak and unloads on a linear path through the initial state. The discontinuity in the constitutive relation is carried into the analysis such that one portion of the local solution is elliptic in character and the other hyperbolic. Material elements in one region may cross over to another as the loading is increased. Local unloading can thus prevail. Presented are the inhomogeneous character of the asymptotic stress and strain in the elliptic and hyperbolic region, in addition to the region in which the material elements had experienced unloading. No one single stress or strain coefficient would be adequate for describing crack instability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The maximum stress concentration factor in brittle materials with a high concentration of cavities is obtained. The interaction between the nearest cavities, in addition to the far field interactions, is taken into account to evaluate the strength distribution based on the statistical analysis of the nearest distance distribution. Through this investigation, it is found that the interaction between the nearest neighbors is much more important than the far field interactions, and one has to consider it in calculating the strength of brittle materials even if the volume fraction of cavities it contains is small. The other important conclusion is that the maximum stress concentration factor has a wide scattered distribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plastic stress-strain fields of two types of steel specimens loaded to large deformations are studied. Computational results demonstrate that, owing to the fact that the hardening exponent of the material varies as strain enlarges and the blunting of the crack tip, the well known HRR stress field in the plane strain model can only hold for the stage of a small plastic strain. Plastic dilatancy is shown to have substantial effects on strain distributions and blunting. To justify the constitutive equations used for analysis and to check the precision of computations, the load-deflection of a three-point bend beam and the load-elongation of an axisymmetric bar notched by a V-shaped cut were tested and recorded. The computed curves are in good accordance with experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The elastic plane problem of a rigid line inclusion between two dissimilar media was considered. By solving the Riemann-Hilbert problem, the closed-form solution was obtained and the stress distribution around the rigid line was investigated. It was found that the modulus of the singular behavior of the stress remains proportional to the inverse square root of the distance from the rigid line end, but the stresses possess a pronounced oscillatory character as in the case of an interfacial crack tip.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An empirical study is made on the fatigue crack growth rate in ferrite-martensite dual-phase (FMDP) steel. Particular attention is given to the effect of ferrite content in the range of 24.2% to 41.5% where good fatigue resistance was found at 33.8%. Variations in ferrite content did not affect the crack growth rate View the MathML sourcewhen plotted against the effective stress intensity factor range View the MathML source which was assumed to follow a linear relation with the crack tip stress intensity factor range ΔK. A high View the MathML source corresponds to uniformly distributed small size ferrite and martensite. No other appreciable correlation could be ralated to the microstructure morphology of the FMDP steel. The closure stress intensity factor View the MathML source, however, is affected by the ferrite content with View the MathML source reaching a maximum value of 0.7. In general, crack growth followed the interphase between the martensite and ferrite.

Dividing the fatigue crack growth process into Stage I and II where the former would be highly sensitive to changes in ΔK and the latter would increase with ΔK depending on the View the MathML source ratio. The same data when correlated with the strain energy density factor range ΔS showed negligible dependence on mean stress or R ratio for Stage I crack growth. A parameter α involving the ratio of ultimate stress to yield stress, percent reduction of area and R is introduced for Stage II crack growth so that the View the MathML source data for different R would collapse onto a single curve with a narrow scatter band when plotted against αΔS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Singular fields at the tip of an interface crack in anisotropic solids are reviewed with emphasis on establishing a framework to quantify fracture resistance under mixed mode conditions. The concepts of mode mixity and surface toughness are unified by using generalized interface traction components. The similarity between the anisotropic theory and existing isotropic theory is shown. Explicit formulae are given for misoriented orthotropic bimaterials with potential applications envisioned including composite laminates and semiconductor crystals. Competition between crack extension along the interface and kinking into the substrate is investigated using a boundary layer formulation. Several case studies reveal the role of anisotropy. An explicit complex variable representation for orthotropic materials and a solution to a dislocation interacting with a crack are presented in two self-contained Appendices.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The elastic plane problem of collinear rigid lines under arbitrary loads is dealt with. Applying the Riemann-Schwarz symmetry principle integrated with the analysis of the singularity of complex stress functions, the general formulation is presented, and the closed-form solutions to several problems of practical importance are given, which include some published results as the special cases. Lastly the stress distribution in the immediate vicinity of the rigid line end is examined.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A perturbation solution is obtained for the local stress-strain fields in an axially cracked cylindrical shell. The tenth-order differential equations are used that take into account the transverse shear deformation. The perturbation of a curvature parameter, λ, is employed, where . The stress intensity factors for finite size cylindrical shells subjected to bending and internal pressure are evaluated. Sufficient accuracy can be obtained without using fine mesh sizes in regions near the crack tip. Also analyzed are the influence of cylinder diameter and shearing stiffness on bulging.