65 resultados para fluid-particle interaction


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The perturbed-chain statistical associating fluid theory and density-gradient theory are used to construct an equation of state (EOS) applicable for the phase behaviors of carbon dioxide aqueous solutions. With the molecular parameters and influence parameters respectively regressed from bulk properties and surface tensions of pure fluids as input, both the bulk and interfacial properties of carbon dioxide aqueous solutions are satisfactorily correlated by adjusting the binary interaction parameter (k(ij)). Our results show that the constructed EOS is able to describe the interfacial properties of carbon dioxide aqueous solutions in a wide temperature range, and illustrate the influences of temperature, pressure, and densities in each phase on the interfacial properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have applied the Green-function method in the GW approximation to calculate quasiparticle energies for the semiconductors GaP and GaAs. Good agreement between the calculated excitation energies and the experimental results was achieved. We obtained calculated direct band gaps of GaP and GaAs of 2.93 and 1.42 eV, respectively, in comparison with the experimental values of 2.90 and 1.52 eV, respectively. An ab initio pseudopotential method has been used to generate basis wave functions and charge densities for calculating the dielectric matrix elements and self-enegies. To evaluate the dynamical effects of the screened interaction, the generalized-plasma-pole model has been utilized to extend the dielectric matrix elements from static results to finite frequencies. We presen the calculated quasiparticle energies at various high-symmetry points of the Brillouin zone and compare them with the experimental results and other calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We successfully applied the Green function theory in GW approximation to calculate the quasiparticle energies for semiconductors Si and GaAs. Ab initio pseudopotential method was adopted to generate basis wavefunctions and charge densities for calculating dielectric matrix elements and electron self-energies. To evaluate dynamical effects of screened interaction, GPP model was utilized to extend dieletric matrix elements from static results to finite frequencies. We give a full account of the theoretical background and the technical details for the first principle pseudopotential calculations of quasiparticle energies in semiconductors and insulators. Careful analyses are given for the effective and accurate evaluations of dielectric matrix elements and quasiparticle self-energies by using the symmetry properties of basis wavefunctions and eigenenergies. Good agreements between the calculated excitation energies and fundamental energy gaps and the experimental band structures were achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To evaluate the dynamical effects of the screened interaction in the calculations of quasiparticle energies in many-electron systems a two-delta-function generalized plasma pole model (GPP) is introduced to simulate the dynamical dielectric function. The usual single delta-function GPP model has the drawback of over simplifications and for the crystals without the center of symmetry is inappropriate to describe the finite frequency behavior for dielectric function matrices. The discrete frequency summation method requires too much computation to achieve converged results since ab initio calculations of dielectric function matrices are to be carried out for many different frequencies. The two-delta GPP model is an optimization of the two approaches. We analyze the two-delta GPP model and propose a method to determine from the first principle calculations the amplitudes and effective frequencies of these delta-functions. Analytical solutions are found for the second order equations for the parameter matrices entering the model. This enables realistic applications of the method to the first principle quasiparticle calculations and makes the calculations truly adjustable parameter free.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic study of electron cyclotron resonance (CR) in two sets of GaAs/Al0.3Ga0.7As modulation-doped quantum-well samples (well widths between 12 and 24 nm) has been carried out in magnetic fields up to 30 T. Polaron CR is the dominant transition in the region of GaAs optical phonons for the set of lightly doped samples, and the results are in good agreement with calculations that include the interaction with interface optical phonons. The results from the heavily doped set are markedly different. At low magnetic fields (below the GaAs reststrahlen region), all three samples exhibit almost identical CR which shows little effect of the polaron interaction due to screening and Pauli-principle effects. Above the GaAs LO-phonon region (B > similar to 23 T), the three samples behave very differently. For the most lightly doped sample (3 x 10(11) cm(-2)) only one transition minimum is observed, which can be explained as screened polaron CR. A sample of intermediate density (6 x 10(11) cm(-2)) shows two lines above 23 T; the higher frequency branch is indistinguishable from the positions of the single line of the low density sample. For the most heavily, doped sample (1.2 x 10(12) cm(-2)) there is no evidence of high frequency resonance, and the strong, single line observed is indistinguishable from the lower branch observed from sample with intermediate doping density. We suggest that the low frequency branch in our experiment is a magnetoplasmon resonance red-shifted by disorder, and the upper branch is single-particle-like screened polaron CR. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We extend the Brueckner-Hartree-Fock (BHF) approach to include the three-body force (TBF) rearrangement contribution in calculating the neutron and proton single particle (s.p.) properties in isospin asymmetric nuclear matter. We investigate the TBF rearrangement effect on the momentum-dependence of neutron and proton s.p. potentials, the isospin splitting and especially its density dependence of the neutron and proton effective masses, and the isospin symmetry potential in neutron-rich nuclear matter by adopting the realistic Argonne V-18 two-body nucleon-nucleon interaction supplemented with a microscopic TBF. We find that at low densities, the TBF rearrangement effect is fairly weak, whereas the TBF induces a significant rearrangement effect on the s.p. properties at high densities and large momenta. The TBF rearrangement contribution to s.p. potential is shown to be repulsive, and it reduces considerably the attraction of the BHF s.p. potential. The repulsion from the TBF rearrangement turns out to be strongly momentum dependent at high densities and high momenta. As a consequence, it enhances remarkably the momentum dependence of the proton and neutron s.p. potentials and reduces the neutron and proton effective masses. At low densities, the TBF rearrangement effect on symmetry potential is almost negligible, while at high densities, it enlarges sizably the symmetry potential. At high enough densities, it may even change the high-momentum behavior of symmetry potential. In both cases, with and without including the TBF rearrangement contribution, the predicted neutron effective mass is larger than the proton one in neutron-rich matter within the BHF framework; i.e., the predicted isospin splitting of the proton and neutron effective masses in neutron-rich matter is such that m(n)(*)>= m(p)(*), in agreement with the recent Dirac-BHF predictions. The TBF rearrangement contribution reduces remarkably the magnitude of the proton-neutron effective mass splitting at high densities. At high enough densities, inclusion of the TBF rearrangement contribution even suppresses almost completely the effective mass splitting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular weight dependence of phase separation behavior of the Poly (ethylene oxide) (PEO)/Poly(ethylene oxide-block-dimethylsiloxane) (P(EO-b-DMS)) blends was investigated by both experimental and theoretical methods. The cloud point curves of PEO/P(EO-b-DMS) blends were obtained by turbidity method. Based on Sanchez-Lacombe lattice fluid theory (SLLFT), the adjustable parameter, epsilon*(12)/k (quantifying the interaction energy between different components), was evaluated by fitting the experimental data in phase diagrams. To calculate the spinodals, binodals, and the volume changes of mixing for these blends, three modified combining rules of the scaling parameters for the block copolymer were introduced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pd nanoparticles supported on WO3/C hybrid material have been developed as the catalyst for the oxygen reduction reaction (ORR) in direct methanol fuel cells. The resultant Pd-WO3/C catalyst has an ORR activity comparable to the commercial Pt/C catalyst and a higher activity than the Pd/C catalyst prepared with the same method. Based on the physical and electrochemical characterizations, the improvement in the catalytic performance may be attributed to the small particle sizes and uniform dispersion of Pd on the WO3/C, the strong interaction between Pd and WO3 and the formation of hydrogen tungsten bronze which effectively promote the direct 4-electron pathway of the ORR at Pd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics simulations are adopted to calculate the equation of state characteristic parameters P*, rho*, and T* of isotactic polypropylene (iPP) and poly(ethylene-co-octene) (PEOC), which can be further used in the Sanchez-Lacombe lattice fluid theory (SLLFT) to describe the respective physical properties. The calculated T* is a function of the temperature, which was also found in the literature. To solve this problem, we propose a Boltzmann fitting of the data and obtain T* at the high-temperature limit. With these characteristic parameters, the pressure-volume-temperature (PVT) data of iPP and PEOC are predicted by the SLLFT equation of state. To justify the correctness of our results, we also obtain the PVT data for iPP and PEOC by experiments. Good agreement is found between the two sets of data. By integrating the Euler-Lagrange equation and the Cahn-Hilliard relation, we predict the density profiles and the surface tensions for iPP and PEOC, respectively. Furthermore, a recursive method is proposed to obtain the characteristic interaction energy parameter between iPP and PEOC. This method, which does not require fitting to the experimental phase equilibrium data, suggests an alternative way to predict the phase diagrams that are not easily obtained in experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, it is demonstrated that the tetraoctylammonium cation can be used directly as a phase-transfer reagent of negatively charged water-based gold nanoparticles. The transference is size-dependent and is based on a wholly electrostatic interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chain-length dependence of the Flory-Huggins (FH) interaction parameter is introduced into the FH lattice theory for polydisperse polymer-blend systems. The spinodals are calculated for the model polymer blends with different chain lengths and distributions. It is found that all the related variables r(n), r(w), r(z), and chain-length distribution, have effects on the spinodals for polydisperse polymer blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cloud-point temperatures (T-cl's) of trans-decahydronaphthalene(TD)/polystyrene (PS, (M) over bar (w) = 270 000) solutions were determined by light scattering measurements over a range of temperatures (1-16degreesC), pressures (100-900 bar), and compositions (4.2-21.6 vol.-% polymer). The system phase separates upon cooling and T-cl was found to increase with rising pressure for constant composition. In the absence of special effects, this finding indicates positive excess volume for the mixing. Special attention was paid to the demixing temperatures as a function of pressure for different polymer solutions and the plots in the T-phi plane (where phi signifies volume fractions). The cloud-point curves of polymer solutions under different pressures were observed for different compositions, which demonstrated that pressure has a greater effect on the TD/PS solutions when far from the critical point as opposed to near the critical point. The Sanchez-Lacombe lattice fluid theory (SLLFT) was used to calculate the spinodals, the binodals, the Flory-Huggins (FH) interaction parameter, the enthalpy of mixing, and the volume changes of mixing. The calculated results show that modified PS scaling parameters can describe the thermodynamics of the TD/PS system well. Moreover the SLLFT describes the experimental results well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The three scaling parameters described in Sanchez-Lacombe lattice fluid theory (SLLFT), T*, P* and rho* of pure polystyrene (PS), pure poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and their mixtures are obtained by fitting corresponding experimental pressure volume-temperature data with equation-of-state of SLLFT. A modified combining rule in SLLFT used to match the volume per mer, v* of the PS/PPO mixtures was advanced and the enthalpy of mixing and Flory-Huggins (FH) interaction parameter were calculated using the new rule. It is found that the difference between the new rule and the old one presented by Sanchez and Lacombe is quite small in the calculation of the enthalpy of mixing and FH interaction parameter and the effect of volume-combining rule on the calculation of thermodynamic properties is much smaller than that of energy-combining rule. But the relative value of interaction parameter changes much due to the new volume-based combining rule. This effect can affect the position of phase diagram very much, which is reported elsewhere [Macromolecules 34 (2001) 6291]

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sanchez-Lacombe (SL) lattice-fluid theory was used to predict the miscibility of the PEO/PVAc blending system. Integral interaction parameters, g of this polymer pair were calculated by using SL theory. And the effect of the temperature, composition of blends and molecular weight of PVAc on the extent of their miscibility has been discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.